首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rice is the most widely consumed staple food, and is cultivated worldwide to satisfy our daily caloric needs. Thus, extensive efforts on rice breeding and biotechnology have substantially focused on the development of elite cultivars with high yields and better grain quality, as well as enhanced resistance against biotic and abiotic stresses. Recently, it has been observed that rice is more than a just grain-producing crop. Carbon-rich materials of the rice cell wall polysaccharides from post-harvest wastes, including the straw and husk, have been converted into bioethanol and other invaluable, renewable materials. In order to maximize the utilization of cell wall-derived resources, it is imperative to understand cell wall chemistry and molecular mechanism underlying cell wall biosynthesis in rice. In the last decade, several approaches, including mutational genetics and the functional characterization of candidate genes, have been successful in isolating some of cell wall biosynthetic genes in rice, marking the first step forward in obtaining a complete understanding of rice cell wall biosynthesis, although the exact biochemical functions have not been conclusive. In this paper, we focus on integrating old and new information to provide an updated perspective in the cell wall formation of rice, highlighting the chemical structures and biosynthesis of rice cell wall polysaccharides.  相似文献   

2.
The biosynthesis of sterols in higher plants   总被引:6,自引:15,他引:6       下载免费PDF全文
1. [2-(14)C]Mevalonate was incorporated into squalene and the major phytosterols of pea and maize leaves; it was also incorporated into compounds belonging to the 4,4-dimethyl and 4alpha-methyl steroid groups and which may be possible phytosterol intermediates. 2. l-[Me-(14)C]Methionine was incorporated into the major sterols and also into the 4,4-dimethyl and 4alpha-methyl steroid groups. No radioactivity was detected in squalene. 3. Under anaerobic conditions incorporation of [2-(14)C]-mevalonate into the non-saponifiable lipid of pea leaves was drastically decreased but radioactive squalene was accumulated. 4. Cycloartenol, 24-methylenecycloartanol, 24-methylenelophenol, 24-ethylidenelophenol, fucosterol, beta-sitosterol, stigmasterol and campesterol have been identified by gas-liquid chromatography in pea leaves. 5. The significance of these results in connexion with phytosterol biosynthesis and the introduction of the alkyl group at C-24 into phytosterols is discussed.  相似文献   

3.
4.
In maize (Zea mays L.) and pine (Pinus taeda L.) seedlings, cellulose microfibril impressions are present on freeze-fractured plasma membranes. It has been proposed that impressions of newly synthesized microfibrils are a record of the movement of terminal synthesizing complexes through the plasma membrane (Mueller and Brown, 1980, J. Cell Biol. 84, 315–326). The association of terminal complexes with the ends of microfibril impressions or with the ends of microfibrils torn through the membrane indicates the orientation of microfibril tips. Unidirectionally-oriented microfibril tips (all pointing in the same direction) are associated with the organized deposition of parallel arrays of microfibrils. Multidirectionally-oriented microfibril tips were observed in a cell in which microfibril deposition was unusually disorganized. Microfibril patterns around pit fields are asymmetric and resemble flow patterns. Unidirectionally-oriented tears are associated with these microfibrils. Although microfibril orientations are deflected around pit fields, the main axis of microfibril orientation is maintained across the surface of the cell. The hypothesis is proposed that the interaction of a flowing plasma membrane with microfibril synthesizing complexes in the plane of the membrane may result in unidirectional deposition and asymmetric microfibril impressions around pit fields.Some of this work has been published in preliminary form (Brown 1979)  相似文献   

5.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

6.
7.
8.
Incubation of cellulose, sodium carboxylcellulose, pectin, polygalacturonic acid, xylan and arabinogalactan with hydrogen peroxide (0.1-10 mM) resulted in rapid breakdown of the polysaccharides when measured by a reduction of solution viscosity or an increase in reducing groups. When the reaction mixtures were precipitated with ethanol or fractionated on G-25-300 Sephadex, low molecular weight reducing groups increased with incubation time indicating that polymer cleavage was occurring and not simply polymer modification. Oxidation was most rapid at pH 6.5 or 7.5, although secondary optima between pH 3.5 and 5.5 were also observed, depending on the polysaccharide. Purified cell walls isolated from various organs of tomato, cucumber and soybean were similarly degraded and the ethanol-soluble reaction products were partially characterized. The data support the hypothesis that hydrogen peroxide generated by peroxidase from NADH may play a role during cell wall breakdown in plants.  相似文献   

9.
10.
Cellulose biosynthesis and deposition in higher plants   总被引:5,自引:1,他引:4  
The plant cell wall is central to plant development. Cellulose is a major component of plant cell walls, and is the world's most abundant biopolymer. Cellulose contains apparently simple linear chains of glucose residues, but these chains aggregate to form immensely strong microfibrils. It is the physical properties of these microfibrils that, when laid down in an organized manner, are responsible for both oriented cell elongation during plant growth and the strength required to maintain an upright growth habit. Despite the importance of cellulose, only recently have we started to unravel details of its synthesis. Mutational analysis has allowed us to identify some of the proteins involved in its synthesis at the plasma membrane, and to define a set of cellulose synthase enzymes essential for cellulose synthesis. These proteins are organized into a very large plasma membrane-localized protein complex. The way in which this protein complex is regulated and directed is central in depositing cellulose microfibrils in the wall in the correct orientation, which is essential for directional cell growth. Recent developments have given us clues as to how cellulose synthesis and deposition is regulated, an understanding of which is essential if we are to manipulate cell wall composition.  相似文献   

11.
Purine and pyrimidine biosynthesis in higher plants   总被引:5,自引:0,他引:5  
Purine and pyrimidine nucleotides have important functions in a multitude of biochemical and developmental processes during the life cycle of a plant. In higher plants the processes of nucleotide metabolism are poorly understood, but it is in principle accepted that nucleotides are essential constituents of fundamental biological functions. Despite of its significance, higher plant nucleotide metabolism has been poorly explored during the last 10–20 years (Suzuki and Takahashi 1977, Schubert 1986, Wagner and Backer 1992). But considerable progress was made on purine biosynthesis in nodules of ureide producing tropical legumes, where IMP-synthesis plays a dominant role in primary nitrogen metabolism (Atkins and Smith 2000, Smith and Atkins 2002). Besides these studies on tropical legumes, this review emphasises on progress made in analysing the function in planta of genes involved in purine and pyrimidine biosynthesis and their impact on metabolism and development.  相似文献   

12.
Sterol biosynthesis in sub-cellular particles of higher plants   总被引:1,自引:1,他引:0       下载免费PDF全文
Mevalonic acid-2-14C was administered to cut stems of bean seedlings (Phaseolus vulgaris L.) for time intervals varying from 20 min to 24 hr. The plants were homogenized in a pH 7.8 tris-sucrose buffer and the homogenates separated into chloroplast, mitochondrial, microsomal, and supernatant fractions by means of differential centrifugation. The distribution of radioactivity into non-saponifiable material in each of the fractions was then determined. After short incubation periods labeled squalene was localized in the supernatant fraction. Labeled sterol was limited at all incubation periods to the microsomal and supernatant fractions. The data presented clearly implicate the microsomal and supernatant fractions in sterol biosynthesis in higher plants.  相似文献   

13.
Tyrosinase involved in betalain biosynthesis of higher plants   总被引:1,自引:0,他引:1  
A tyrosine-hydroxylating enzyme was partially purified from betacyanin-producing callus cultures of Portulaca grandiflora Hook. by using hydroxyapatite chromatography and gel filtration. It was characterized as a tyrosinase (EC 1.14.18.1 and EC 1.10.3.1) by inhibition experiments with copper-chelating agents and detection of concomitant o-diphenol oxidase activity. The tyrosinase catalysed both the formation of L-(3,4-dihydroxyphenyl)-alanine (Dopa) and cyclo-Dopa which are the pivotal precursors in betalain biosynthesis. The hydroxylating activity with a pH optimum of 5.7 was specific for L-tyrosine and exhibited reaction velocities with L-tyrosine and D-tyrosine in a ratio of 1:0.2. Other monophenolic substrates tested were not accepted. The enzyme appeared to be a monomer with an apparent molecular mass of ca. 53 kDa as estimated by gel filtration and SDS-PAGE. Some other betalain-producing plants and cell cultures were screened for tyrosinase activity; however, activities could only be detected in red callus cultures and plants of P. grandiflora as well as in plants, hairy roots and cell cultures of Beta vulgaris L. subsp. vulgaris (Garden Beet Group), showing a clear correlation between enzyme activity and betacyanin content in young B. vulgaris plants. We propose that this tyrosinase is specifically involved in the betalain biosynthesis of higher plants. Received: 14 July 1998 / Accepted: 23 October 1998  相似文献   

14.
The specific nature of plant cell wall polysaccharides   总被引:6,自引:2,他引:4       下载免费PDF全文
Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard.  相似文献   

15.
The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.  相似文献   

16.
Metabolic engineering of ketocarotenoid biosynthesis in higher plants   总被引:1,自引:0,他引:1  
Ketocarotenoids such as astaxanthin and canthaxanthin have important applications in the nutraceutical, cosmetic, food and feed industries. Astaxanthin is derived from β-carotene by 3-hydroxylation and 4-ketolation at both ionone end groups. These reactions are catalyzed by β-carotene hydroxylase and β-carotene ketolase, respectively. The hydroxylation reaction is widespread in higher plants, but ketolation is restricted to a few bacteria, fungi, and some unicellular green algae. The recent cloning and characterization of β-carotene ketolase genes in conjunction with the development of effective co-transformation strategies permitting facile co-integration of multiple transgenes in target plants provided essential resources and tools to produce ketocarotenoids in planta by genetic engineering. In this review, we discuss ketocarotenoid biosynthesis in general, and characteristics and functional properties of β-carotene ketolases in particular. We also describe examples of ketocarotenoid engineering in plants and we conclude by discussing strategies to efficiently convert β-carotene to astaxanthin in transgenic plants.  相似文献   

17.
18.
Phenol biosynthesis in higher plants. Gallic acid   总被引:1,自引:0,他引:1       下载免费PDF全文
The biosynthesis of gallic acid in a number of higher plants was investigated by using l-[U-(14)C]phenylalanine, (-)-[G-(14)C]shikimic acid, d-[1-(14)C]glucose and d-[6-(14)C]glucose as tracers. The results are compared with those obtained similarly for caffeic acid and are interpreted in terms of the dehydrogenation of 5-dehydroshikimic acid as a normal route of metabolism for gallic acid.  相似文献   

19.
20.
Abscisic acid physiology and biosynthesis in higher plants   总被引:1,自引:0,他引:1  
Abscisic acid (ABA) has been postulated to modulate several aspects of plant growth and development. While it is tempting to attribute changes in growth and development to a specific hormone such as ABA, the reality is that these processes are complex and poorly understood. Since there is so little known about basic biochemical events that occur during growth and development, it is difficult ot unambiguously assign a role for ABA in any process. Becuse of this, many of the cited effects of ABA on growth and development have not been conclusively demonstrated. Howver, it is clear that ABA has a function in ameliorating water-stress and preventing vivipary. The roles of ABA in bud dormancy and growth still remain unclear. With the use of biosynthesis inhibitors and mutants which block ABA accumulation, it has been shown that ABA does not play a role in gravitropism.
Knowledge of how the levels of any particular growth regulator are modulated is essential for the understanding of its physiology. The use of mutants, inhibitors and heavy isotopes suggests that ABA may be derived from a carotenoid rather than directly from farnesyl pyrophosphate (FPP), and that the cleavage of a carotenoid is the rate limiting step. However, the relative contribution of each pathway (and the role of xanthoxin) in ABA biosynthesis remain unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号