首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Host fitness is impacted by trillions of bacteria in the gastrointestinal tract that facilitate development and are inextricably tied to life history. During development, microbial colonization primes the gut metabolism and physiology, thereby setting the stage for adult nutrition and health. However, the ecological rules governing microbial succession are poorly understood. In this study, we examined the relationship between host lineage, captive diet, and life stage and gut microbiota characteristics in three primate species (infraorder, Lemuriformes). Fecal samples were collected from captive lemur mothers and their infants, from birth to weaning. Microbial DNA was extracted and the v4 region of 16S rDNA was sequenced on the Illumina platform using protocols from the Earth Microbiome Project. Here, we show that colonization proceeds along different successional trajectories in developing infants from species with differing dietary regimes and ecological profiles: frugivorous (fruit-eating) Varecia variegata, generalist Lemur catta, and folivorous (leaf-eating) Propithecus coquereli. Our analyses reveal community membership and succession patterns consistent with previous studies of human infants, suggesting that lemurs may serve as a useful model of microbial ecology in the primate gut. Each lemur species exhibits distinct species-specific bacterial diversity signatures correlating to life stages and life history traits, implying that gut microbial community assembly primes developing infants at species-specific rates for their respective adult feeding strategies.  相似文献   

2.
目的分析中国东北地区母亲分泌型和非分泌型基因的分布及其在哺乳期母乳中低聚糖(HMO)种类和含量的差异,探讨这些差异对于子代肠道微生态的影响。方法收集56例母亲在哺乳期第6天母乳样本及其母乳喂养的新生儿在同一天的粪便样本;以质谱分析20种主要HMO的含量;以变性梯度凝胶电泳检测两组新生儿肠道菌群差异。结果所选取的56例母亲其分泌型与非分泌型的比例为43∶13,其中分泌型母亲的岩藻糖基化HMO含量显著高于非分泌型母亲,并且两组新生儿肠道菌群结构也有明显差异。结论不同基因型母亲在哺乳期HMO存在明显差异,而这一差异显著影响了其子代肠道菌群结构。  相似文献   

3.
The widespread use of antibiotics for medical and veterinary purposes has led to an increase of microbial resistance. The antibiotic resistance of pathogenic bacteria has been studied extensively. However, antibiotics are not only selective for pathogens: they also affect all members of the gut microbiota. These microorganisms may constitute a reservoir of genes carrying resistance to specific antibiotics. This study was designed to characterize the gut microbiota with regard to the presence of genes encoding tetracycline resistance proteins (tet) in the gut of healthy exclusively breast-fed infants and their mothers. For this purpose we determined the prevalence of genes encoding ribosomal protection proteins (tet M, tet W, tet O, tet S, tet T and tet B) by PCR and characterized the gut microbiota by FISH in stools of infants and their mothers. The gene tet M was found in all the breast-fed infants and their mothers. tet O was found in all of the mothers' samples, whilst only 35% of the infants harboured this gene. tet W was less frequently found (85% of the mothers and 13% of the infants). None of the other genes analysed was found in any sample. Our results suggest that genes carrying antibiotic resistance are common in the environment, as even healthy breast-fed infants with no direct or indirect previous exposure to antibiotics harbour these genes.  相似文献   

4.
Previous studies have provided conflicting data on the presence of selective pressures in the transmission of a homogeneous maternal viral subpopulation to the infant. Therefore, the purpose of this study was to definitively characterize the human immunodeficiency virus type 1 (HIV-1) quasispecies transmitted in utero and intrapartum. HIV-1 envelope gene diversity from peripheral blood mononuclear cells and plasma was measured during gestation and at delivery in mothers who did and did not transmit HIV perinatally by using a DNA heteroduplex mobility assay. Children were defined as infected in utero or intrapartum based on the timing of the first detection of HIV. Untreated transmitting mothers (n = 19) had significantly lower HIV-1 quasispecies diversity at delivery than untreated nontransmittting mothers (n = 18) (median Shannon entropy, 0.711 [0.642 to 0.816] versus 0.853 [0.762 to 0.925], P = 0.005). Eight mothers transmitted a single major env variant to their infants in utero, and one mother transmitted a single major env variant intrapartum. Four mothers transmitted multiple HIV-1 env variants to their infants in utero, and two mothers transmitted multiple env variants intrapartum. The remaining six intrapartum- and two in utero-infected infants had a homogeneous HIV-1 env quasispecies which did not comigrate with their mothers' bands at their first positive time point. In conclusion, in utero transmitters were more likely to transmit single or multiple major maternal viral variants. In contrast, intrapartum transmitters were more likely to transmit minor HIV-1 variants. These data indicate that different selective pressures, depending on the timing of transmission, may be involved in determining the pattern of maternal HIV-1 variant transmission.  相似文献   

5.
I Hamad  C Sokhna  D Raoult  F Bittar 《PloS one》2012,7(7):e40888

Background

Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective.

Methodology/Principal Finding

In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%), corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2%) corresponded to 9 different species of plants; 59 sequences (6%) belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5%) were related to human 18S rRNA sequences.

Conclusion

Our results revealed a complex eukaryotic community in the volunteer’s gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease.  相似文献   

6.
Whereas the infant gut microbiome is the subject of intense study, relatively little is known regarding the nares microbiome in newborns and during early life. This study aimed to survey the typical composition and diversity of human anterior nare microflora for developing infants over time, and to explore how these correlate to their primary caregivers. Single nare swabs were collected at five time points over a one-year period for each subject from infant-caregiver pairs. Our study comprised of 50 infants (recruited at 2 weeks, post delivery) and their 50 primary caregivers. Applying the chaperonin-60 (cpn60) universal target (UT) amplicon as our molecular barcoding marker to census survey the microbial communities, we longitudinally surveyed infant nares microbiota at 5 time points over the course of the first year of life. The inter- and intra-subject diversity was catalogued and compared, both longitudinally and relative to their adult primary caregivers. Although within-subject variability over time and inter-subject variability were both observed, the assessment detected only one or two predominant genera for individual infant samples, belonging mainly to phyla Actinobacteria, Firmicutes, and Proteobacteria. Consistent with previously observed microbial population dynamics in other body sites, the diversity of nares microflora increased over the first year of life and infants showed differential operational taxonomic units (OTUs) relative to their matched primary caregiver. The collected evidence also support that both temporal and seasonal changes occur with respect to carriage of potentially pathogenic bacteria (PPBs), which may influence host predisposition to infection. This pilot study surveying paired infant/caregiver nare microbiomes provides novel longitudinal diversity information that is pertinent to better understanding nare microbiome development in infants.  相似文献   

7.
In spite of its major impact on life-long health, the process of microbial succession in the gut of infants remains poorly understood. Here, we analyze the patterns of taxonomic and functional change in the gut microbiota during the first year of life for a birth cohort of 13 infants. We detect that individual instances of gut colonization vary in the temporal dynamics of microbiota richness, diversity, and composition at both functional and taxonomic levels. Nevertheless, trends discernible in a majority of infants indicate that gut colonization occurs in two distinct phases of succession, separated by the introduction of solid foods to the diet. This change in resource availability causes a sharp decrease in the taxonomic richness of the microbiota due to the loss of rare taxa (p = 2.06e-9), although the number of core genera shared by all infants increases substantially. Moreover, although the gut microbial succession is not strictly deterministic, we detect an overarching directionality of change through time towards the taxonomic and functional composition of the maternal microbiota. Succession is however not complete by the one year mark, as significant differences remain between one-year-olds and their mothers in terms of taxonomic (p = 0.009) and functional (p = 0.004) microbiota composition, and in taxonomic richness (p = 2.76e-37) and diversity (p = 0.016). Our results also indicate that the taxonomic composition of the microbiota shapes its functional capacities. Therefore, the observed inter-individual variability in taxonomic composition during succession is not fully compensated by functional equivalence among bacterial genera and may have important physiological consequences. Finally, network analyses suggest that positive interactions among core genera during community assembly contribute to ensure their permanence within the gut, and highlight an expansion of complexity in the interactions network as the core of taxa shared by all infants grows following the introduction of solid foods.  相似文献   

8.
Animals maintain complex associations with a diverse microbiota living in their guts. Our understanding of the ecology of these associations is extremely limited in reptiles. Here, we report an in‐depth study into the microbial ecology of gut communities in three syntopic and viviparous lizard species (two omnivores: Liolaemus parvus and Liolaemus ruibali and an herbivore: Phymaturus williamsi). Using 16S rRNA gene sequencing to inventory various bacterial communities, we elucidate four major findings: (i) closely related lizard species harbour distinct gut bacterial microbiota that remain distinguishable in captivity; a considerable portion of gut bacterial diversity (39.1%) in nature overlap with that found on plant material, (ii) captivity changes bacterial community composition, although host‐specific communities are retained, (iii) faecal samples are largely representative of the hindgut bacterial community and thus represent acceptable sources for nondestructive sampling, and (iv) lizards born in captivity and separated from their mothers within 24 h shared 34.3% of their gut bacterial diversity with their mothers, suggestive of maternal or environmental transmission. Each of these findings represents the first time such a topic has been investigated in lizard hosts. Taken together, our findings provide a foundation for comparative analyses of the faecal and gastrointestinal microbiota of reptile hosts.  相似文献   

9.
Neonatal hypoxic ischemic encephalopathy (HIE) in the perinatal period can lead to significant neurological deficits in later life. Total body cooling (TBC) is a neuroprotective strategy used in the treatment of HIE and has been shown to reduce seizures and improve neurodevelopmental outcomes in treated infants. Little is known, however, about the effects of HIE/TBC on the developing gut microbiota composition and subsequent metabolic profile. Ten term infants with HIE who received TBC at 33.5 °C for 72 h were recruited. A control group consisted of nine healthy full term infants. Faecal samples were collected from both groups at 2 years of age and stored at −20 °C. 16S rRNA amplicon Illumina sequencing was carried out to determine gut microbiota composition and 1H NMR analysis was performed to determine the metabolic profile of faecal water. The gut microbiota composition of the HIE/TBC infants were found to have significantly lower proportions of Bacteroides compared to the non-cooled healthy control group. Alpha diversity measures detected significantly lower diversity in microbial richness in the HIE/TBC infant group compared to the control infants (Shannon index, <0.05). High inter-individual variation was found in gut microbiota composition and metabolic profile of both groups. Initial principal coordinate analysis and hierarchal clustering of compounds on MetaboAnalyst 3.0 indicated no clear separation in the metabolic profile of these two infant groups. These results suggest that there is no significant impact on the gut microbial development of HIE/TBC infants compared to healthy infants at 2 years of life. To our knowledge this is the first study to report the gut microbiota composition and metabolic profile of infants who have experienced HIE/TBC at birth.  相似文献   

10.
Gut microbiota plays a key role in multiple aspects of human health and disease, particularly in early life. Distortions of the gut microbiota have been found to correlate with fatal diseases in preterm infants, however, developmental patterns of gut microbiome and factors affecting the colonization progress in preterm infants remain unclear. The purpose of this prospective longitudinal study was to explore day-to-day gut microbiome patterns in preterm infants during their first 30 days of life in the neonatal intensive care unit (NICU) and investigate potential factors related to the development of the infant gut microbiome. A total of 378 stool samples were collected daily from 29 stable/healthy preterm infants. DNA extracted from stool was used to sequence the V4 region of the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs) and α-diversity of the community were determined using QIIME software. Proteobacteria was the most abundant phylum, accounting for 54.3% of the total reads. Result showed shift patterns of increasing Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus over time during early life. Alpha-diversity significantly increased daily in preterm infants after birth and linear mixed-effects models showed that postnatal days, feeding types and gender were associated with the α-diversity, p< 0.05–0.01. Male infants were found to begin with a low α-diversity, whereas females tended to have a higher diversity shortly after birth. Female infants were more likely to have higher abundance of Clostridiates, and lower abundance of Enterobacteriales than males during early life. Infants fed mother’s own breastmilk (MBM) had a higher diversity of gut microbiome and significantly higher abundance in Clostridiales and Lactobacillales than infants fed non-MBM. Permanova also showed that bacterial compositions were different between males and females and between MBM and non-MBM feeding types. In conclusion, infant postnatal age, gender and feeding type significantly contribute to the dynamic development of the gut microbiome in preterm infants.  相似文献   

11.
【背景】由于滥用抗生素导致细菌耐药性日益严重。对于双歧杆菌,人们往往注重其益生功能的挖掘而忽视了对其耐药性的研究,存在一定的安全隐患。【目的】检测母婴肠道中假小链双歧杆菌的耐药性,探究婴儿肠道中假小链双歧杆菌耐药性的来源。【方法】利用微量肉汤稀释法测定48株分离自母婴肠道的假小链双歧杆菌对14种抗生素的耐药性,比较分离自不同家庭母婴肠道中假小链双歧杆菌的耐药性。【结果】48株母婴肠道分离株对四环素、氯霉素、新霉素、环丙沙星100%耐药,对其余10种抗生素耐药率依次为:卡那霉素98%、利福平80%、克林霉素78%、甲氧苄啶63%、红霉素59%、庆大霉素43%、链霉素16%、万古霉素14%、氨苄西林6%、利奈唑胺2%。母婴肠道分离株的耐药性无显著差异,分离自同一家庭母婴肠道的菌株具有相似的耐药表型。【结论】分离自母婴肠道的假小链双歧杆菌对多种抗生素具有耐药性,婴儿肠道中假小链双歧杆菌的耐药性可能是由母亲肠道垂直传递而来。  相似文献   

12.
Recent human and animal studies have found associations between gut microbiota composition and serum levels of sex hormones, indicating that they could be an important factor in shaping the microbiota. However, little is known about the effect of regular hormonal fluctuations over the menstrual cycle or CHC-related changes of hormone levels on gut microbiota structure, diversity and dynamics. The aim of this study was to investigate the effect of CHCs on human gut microbiota composition. The effect of CHC pill intake on gut microbiota composition was studied in a group of seven healthy pre-menopausal women using the CHC pill, compared to the control group of nine age-matched healthy women that have not used hormonal contraceptives in the 6 months prior to the start of the study. By analysing the gut microbiota composition in both groups during one menstrual cycle, we found that CHC usage is associated with a minor decrease in gut microbiota diversity and differences in the abundance of several bacterial taxa. These results call for further investigation of the mechanisms underlying hormonal and hormonal contraceptive-related changes of the gut microbiota and the potential implications of these changes for women's health.  相似文献   

13.
The study reported here examined the effect of different rearing conditions and psychological stress on immunoglobulin levels in rhesus monkey infants. In the first experiment, 24 rhesus neonates were placed in one of the three following rearing conditions: Separated from their mothers and reared in the laboratory nursery; kept with their biological mothers; or removed at birth from their biological mothers and cross-fostered to adoptive rhesus mothers. Plasma samples were obtained from the nursery-reared infants immediately after birth and at weekly intervals for the next 30 days. Samples were also obtained from mother-reared and foster-reared infants on days 15 and 29. All samples were tested for IgG and IgM levels. The results indicated that neither rearing nor diet affected Ig levels. IgG levels were highest at birth and decreased progressively for the first 30 days, suggesting that placental transfer of maternal IgG is the critical determinant of IgG levels in primate infants as in humans. IgM changes were also similar to those in human infants: Low levels at birth, a significant increase from birth to day 15, and a moderate decline from day 15 to day 30. When IgG levels and IgM levels were correlated across the first month, many significant correlations were found which were consistent with human data relating both infant IgG and IgM levels to infant maturation. In the second experiment, 11 of the previously tested nursery infants were subjected to four consecutive social separations from peer groups at 6 months of age. Plasma samples were obtained before and after the first and fourth weeks of separation and tested for IgG and IgM levels. Small but significant decreases in both immunoglobulins were detected after 4 days of separation, particularly on the fourth week.  相似文献   

14.
K. Minde  L. Ford  L. Celhoffer  C. Boukydis 《CMAJ》1975,113(8):741-745
The initial attachment of three mothers to three premature infants weighing less than 1500 g was assessed by observation of the mother''s behaviour during visits to her child in the hospital nursery. Interactions of mothers and infants were compared with those of nurses and infants. Premature infants, during a stay in hospital of approximately 7 weeks, have to adapt to up to 70 different nurses and receive generally little contact stimulation from them. Mothers change in their interactional behaviour over time but show persistent individual differences in amount of touching, smiling and talking to their infants. Follow-up investigation will determine if the maternal behaviour as demonstrated in the nursery is predictive of later parenting disorders.  相似文献   

15.
The aim of the study was to assess the quantitative and qualitative differences of the gut microbiota in infants. We evaluated gut microbiota at the age of 6 months in 32 infants who were either exclusively breast-fed, formula-fed, nursed by a formula supplemented with prebiotics (a mixture of fructo- and galacto-oligosaccharides) or breast-fed by mothers who had been given probiotics. The Bifidobacterium, Bacteroides, Clostridium and Lactobacillus/Enterococcus microbiota were assessed by the fluorescence in situ hybridization, and Bifidobacterium species were further characterized by PCR. Total number of bifidobacteria was lower among the formula-fed group than in other groups (P=0.044). Total amounts of the other bacteria were comparable between the groups. The specific Bifidobacterium microbiota composition of the breast-fed infants was achieved in infants receiving prebiotic supplemented formula. This would suggest that early gut Bifidobacterium microbiota can be modified by special diets up to the age of 6 months.  相似文献   

16.
Numerous environmental gene library studies have shown that eukaryote microbial diversity is much greater than expected. Molecular surveys of several 'extreme' and some more anthropomorphically commonplace environments have revealed many previously unsampled micro-eukaryotic lineages. However, it cannot be assumed that all of the sequences recovered from these studies are derived from real organisms, and for those that are, many questions remain about their distribution and ecology. Integrating all available sequence data from these studies reveals patterns of distribution, diversity and evolutionary relationships that are not accessible from independent analyses of the individual surveys and enables us to review the wider implications of such studies.  相似文献   

17.
It has been well documented that human milk contains several immunomodulator components which are important during infant period when the newborn's immune system is still under development. In this study, we aim at examining levels of cytokines, zinc (Zn), and copper (Cu) in milk from mothers of premature and mature infants, and comparing changes during lactation periods consequently. Milk was collected from total of 40 mothers (group M: mothers of mature infants, n = 20; group PM: mothers of premature infants, n = 20) from four lactation stages: colostrum (0-7 days), transitional (7-14 days), mature milk (21 days), and mature milk (2nd month). Levels of cytokines (interleukin [IL]-lbeta, IL-2, IL-6, IL-8, tumor necrosis factor-alpha [TNF-alpha]) were determined by chemiluminesence method, whereas atomic absorption spectrophotometer was used for the determination of Zn and Cu levels. Cytokine levels were determined to be high in colostrum and transient milk from mothers of full-term infants, whereas their levels were reduced drastically in the 21st day and the 2nd month milk (P < .01, P < .001). Similar trends were observed in milk from mothers of premature infants, but cytokine levels were significantly lower in colostrum compared to colostrum from mothers of mature infants (P < .01). The differences in cytokine levels were continuous in transient milk (P < .05) and mature milk (21 days) (P < .05), whereas there was no statistically significant differences between milk from both groups of mothers in the 2nd month (P > .05). Zn levels in milk from mothers of premature infants were significantly lower compared to the ones from mothers of mature infants (P < .01) and these differences continued through the 2nd month. Although Cu levels were lower in milk from mothers of premature infants, there was no statistically significant difference except colostrum (P > .05). Our results clearly demonstrate that the level of immunomodulating agents such as cytokines and trace elements in milk from mothers of premature infants is less than the level of the same agents in milk from mothers of full-term infants. Although there are commercially available products for infant feeding, human milk is still the best natural nutrient for newborns. Therefore, when premature infants are breastfed, necessary precautions such as supplemantary diets must be considered for possible infections and risks related with immune system deficiency.  相似文献   

18.
Altered Gut Microbiota Composition Associated with Eczema in Infants   总被引:1,自引:0,他引:1  
Eczema is frequently the first manifestation of an atopic diathesis and alteration in the diversity of gut microbiota has been reported in infants with eczema. To identify specific bacterial communities associated with eczema, we conducted a case-control study of 50 infants with eczema (cases) and 51 healthy infants (controls). We performed high-throughput sequencing for V3–V4 hypervariable regions of the 16S rRNA genes from the gut fecal material. A total of 12,386 OTUs (operational taxonomic units) at a 97% similarity level were obtained from the two groups, and we observed a difference in taxa abundance, but not the taxonomic composition, of gut microbiota between the two groups. We identified four genera enriched in healthy infants: Bifidobacterium, Megasphaera, Haemophilus and Streptococcus; and five genera enriched in infants with eczema: Escherichia/Shigella, Veillonella, Faecalibacterium, Lachnospiraceae incertae sedis and Clostridium XlVa. Several species, such as Faecalibacterium prausnitzii and Ruminococcus gnavus, that are known to be associated with atopy or inflammation, were found to be significantly enriched in infants with eczema. Higher abundance of Akkermansia muciniphila in eczematous infants might reduce the integrity of intestinal barrier function and therefore increase the risk of developing eczema. On the other hand, Bacteroides fragilis and Streptococcus salivarius, which are known for their anti-inflammatory properties, were less abundant in infants with eczema. The observed differences in genera and species between cases and controls in this study may provide insight into the link between the microbiome and eczema risk.  相似文献   

19.
The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human‐processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.  相似文献   

20.
We have measured growth factor concentrations in human milk from mothers of term and premature infants to identify any adaptive responses to premature delivery. Measurements included concentrations of epidermal growth factor and insulin and the growth-promoting activity of milk in vitro, estimated by the stimulation of rats of protein accumulation in cultured human fibroblasts. Compared with women delivering at full-term, mothers of premature infants produced milk containing higher concentrations of epidermal growth factor and increased growth-promoting activity in vitro, changes which were probably maintained throughout lactation. The anabolic effect of human milk in cultured human fibroblasts could be attributed partially but not entirely to epidermal growth factor, suggesting that the concentrations of additional growth factors were also increased following premature delivery. Insulin did not contribute to the extra growth-promoting activity; premature delivery depressed the insulin concentration significantly on the first two days of lactation and, thereafter, milk from mothers of term or premature infants contained similar amounts of insulin. Growth factor concentrations were also measured in cow's milk-based formulae. These formulae contained low concentrations of epidermal growth factor and insulin and reduced growth-promoting activity compared with human milk. Changes in milk growth factor concentrations may occur as a compensatory mechanism to accelerate growth and development in pre-term infants, and if so, it follows that premature infants could benefit more from their own mother's milk than from pooled human milk or from cow's milk-based formulae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号