首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The cactus moth, Cactoblastis cactorum (Berg) (Phycitidae) is native to South America. It was released as a biological control agent against alien Opuntia- cacti in Australia in the 1920s, then in southern Africa, and latterly on several islands, including those in the Caribbean. In 1989, the cactus moth was discovered in Florida, in the United States of America, where it is now threatening the survival of indigenous Opuntia species. In this paper we identify some of the attributes that have contributed to the success of C. cactorum as a weed biological control agent. Many of these same qualities account for the problems that C. cactorum has caused in Florida and predispose it as a major threat to the speciose, native Opuntia- floras of Central and North America. An estimated 79 platyopuntia (prickly pear) species are at risk: 51 species endemic to Mexico; nine species endemic to the United States; and 19 species common to both countries. Many cultivated and wild Opuntia species, that are used in various ways, are also vulnerable to attack by C. cactorum , including at least 25 species in Mexico and three species in the United States, particularly the widely exploited and culturally important cultivars of O. ficus-indica . Some control strategies are suggested that may minimize the risk and consequences of invasion by the cactus moth. The wider implications of this threat to the practice of weed biological control and to conservation are discussed.  相似文献   

2.
Cactoblastis cactorum Berg (Lepidoptera: Pyralidae), the cactus moth, is a well-known biological control agent of prickly pear cactus (Cactaceae: Opuntia Miller). The arrival of the moth in Florida and its subsequent spread through the southeastern United States poses a threat to opuntioid diversity in North America. Of particular concern are the ecological and economic impacts the moth could have in the southwestern United States and Mexico, where both native and cultivated Opuntia species are important resources. It is unknown which species would best support larval development if the moth were to spread further westward in North America. This study aimed to determine if ovipositing females demonstrate preferences for any of 14 common opuntioids native to or naturalized in Mexico and the southwestern United States; which of these opuntioids best support larval development; and if oviposition preference correlates with larval performance, as predicted by simple adaptive models. Results from a field experiment showed that female moths preferred O. engelmannii Salm-Dyck ex Engelmann variety linguiformis (Griffiths) Parfitt and Pinkava and O. engelmannii variety engelmannii for oviposition. A generalized linear model showed number of cladodes and degree of spininess to be significant predictors of oviposition activity. Results from a no-choice larval survival experiment showed Consolea rubescens (Salm-Dyck ex de Candolle.) Lemaire and O. streptacantha Lemaire to be the best hosts. Epidermal toughness was a significant predictor of most larval fitness parameters. In general, oviposition preference was not correlated with larval performance. A lack of co-evolutionary history between C. cactorum and North American opuntioid species may help explain this disconnect.  相似文献   

3.
Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell system at various scales is presented. Shake flask studies were conducted to assess conditions to be used in bioreactors. Two insect cell lines, Trichoplusia ni (H5) and Spodoptera frugiperda (Sf9), were compared for their ability to produce rAAV-2 after infection with recombinant baculoviruses coding for the essential components of the vector. The effect of varying the ratio between individual baculoviruses and the effect of the overall multiplicity of infection (MOI), as well as the cell density at infection, were also examined. Infectious rAAV-2 particles were proportionally produced when increasing the individual MOI of BacRep virus up to 1.6. When equal amounts of each virus were used, a leveling effect occurred beyond an overall MOI of 5 and a maximum titer was obtained. Increasing the cell density at infection resulted in higher yields when infecting the cells in fresh medium; however, for the production of bioactive particles, an optimal peak cell density of approximately 1 x 10(6) cells/mL was observed without medium exchange. Infection in 3- and 20-L bioreactors was done at an overall MOI of 5 with a ratio of the three baculoviruses equal to 1:1:1. Under these conditions and infecting the cells in fresh medium, a total of approximately 2.2 x 10(12) infectious viral particles (bioactive particles) or 2.6 x 10(15) viral particles were produced in a 3-L bioreactor. Without replacing the medium at infection, similar titers were produced in 20 L. Our data demonstrates the feasibility of rAAV-2 production by BEVS at various scales in bioreactors and indicates that further optimization is required for production at high cell densities.  相似文献   

4.
Summary The in vitro host range of a newly isolated baculovirus from the diamondback moth Plutella xylostella was tested against six lepidopteran cell lines. Two baculoviruses with host ranges from the alfalfa looper Autographa californica (A. californica multiple nucleopolyhedrovirus, AcMNPV) and the celery looper Anagrapha falcifera (AfMNPV) were also included in this study for comparative purposes. PxMNPV replicated in all six cell lines and produced occlusion bodies, with HV-AMI and TN-CLI cells producing the highest viral titers and greatest number of occlusion bodies. There was no significant replication of AcMNPV and AfMNPV in the HZ-FB33 cell line and thus no production of occlusion bodies. The restriction endonuclease profiles of the three baculoviruses showed similarities but could be readily distinguished from each other. Either HV-AM1 or TN-CL1 would be suitable cell lines for the in vitro production of PxMNPV.  相似文献   

5.
Three selected uncloned Pop 2, Pop 3, Pop 4 and two cloned cell lines Pop cl1A and Pop cl2B were derived from the original cell line established from Phthorimaea operculella (ORS-Pop-93). Three new non-selected cell lines ORS-Pop-94A, ORS-Pop-94B and ORS-Pop-95 were also established from embryos of the same insect. Differences in morphology, growth rate and polypeptide profile were determined between these cell lines. All the cell lines were susceptible to the Autographa californica nucleopolyhedrovirus (AcMNPV). The cloned cell lines produced higher levels of AcMNPV (TCID-50 and PIB) than the parental cells and at the same rate as the Sf9 reference cell line. Substantial amounts of viral DNA were synthesized in the clone Pop cl 2B after infection with the granulosis virus of the potato tuber moth P. operculella (PTMGV) and a complete multiplication was obtained in the ORS-Pop-95 cell line. The comparison between Pop cell lines which support limited or complete replication of certain baculoviruses can offer insights into some of the molecular barriers which restrict the host range of these viruses. These cell lines with variable susceptibility to baculoviruses could also be used for in vitro recombinations, increasing their virus host range to be used for the control of this pest. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We have investigated the gene targeting frequency at thehprtlocus in a range of embryonic stem cell lines selected for variations in cell cycle parameters. Our results show that targeting frequency varies with cell line by as much as 12-fold between nonisogenic lines and 3-fold between isogenic lines and that a nonisogenic line can support homologous recombination events by up to 21-fold more frequently than an isogenic line. This variation is consistent with both insertion and replacement vectors. These results can be explained by an inverse linear correlation of targeting frequencies with cell doubling times. Additionally, by reducing serum concentration in the culture medium the mean cell doubling time for R1 ES cells can be increased from 11.4 to 15.7 h, with a subsequent 15-fold decrease in gene targeting frequency. This change fits the correlation found for the different nonisogenic cell lines. Our observations have important implications when performing gene targeting experiments and explain some of the variation noted between experiments.  相似文献   

7.
A new cell line, MSU-TnT4 (TnT4), was established from Trichoplusia ni embryos for use with baculovirus expression vectors and evaluated for its potential for membrane protein production. To evaluate membrane protein synthesis, recombinant baculoviruses were constructed to express the human neurotensin receptor 1 as an enhanced green fluorescent protein (GFP) fusion. TnT4 cells had a doubling time of 21 h and expressed the membrane-GFP fusion protein at approximately twice the level as Sf21 cells from the p10 promoter, as evaluated by GFP intensity. Expression of secreted alkaline phosphatase (SEAP) was similar to that of Sf21 cells. Expression of membrane-GFP fusion proteins in recombinant baculoviruses provides a rapid method for evaluating the potential of new cell lines for the production of membrane proteins using a baculovirus expression vector system (BEVS).  相似文献   

8.
A new cell line has been established from larval hemocytes of the moth, S. litura (tobacco cut worm). It took 147 days to form a monolayer and one year for the first 17 passages. At present, the culture is at 86th passage level and is designated NIV-SU-1095. Three cell types could be distinguished, viz. plasmatocytes (53%), prohemocytes (36%) and granular hemocytes (11%). The chromosome number was very high, 74% metaphase cells showed more than 100 chromosomes. The cells could be cryopreserved. The cells were susceptible to the baculoviruses, Autographa californica nuclear polyhedrosis virus and S. litura nuclear polyhedrosis virus (SLNPV). Plaques could be observed on 7th post infection day with SLNPV. Six cloned cell lines have been developed of which clone II-1F was more sensitive to both the baculoviruses compared to the original cell line.  相似文献   

9.
A new continuous cell line, NTU-SE, was established from the pupal tissues of an economically important pest, the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). This cell line contains four major morphologic types: round, polymorphic, spindle-shaped, and comma-shaped cells. The population doubling time of this new line in TNM-FH medium supplemented with 8% fetal bovine serum (FBS) at 28°C is 35.5h. The chromosomal spread from NTU-SE cells is typical to the chromosomal morphology of lepidopteran cell lines. Confidently, NTU-SE cell line is a new cell line that exhibits distinct isozyme patterns of esterase, lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) from those of the other insect cell lines. In addition, the DNA sequence of the nuclear ribosomal internal transcribed spacer (ITS) region of NTU-SE cells is above 96% identical to that sequence of S. exigua larvae, as compared to only 66% identical to that of S. litura larvae. The NTU-SE cell line is highly susceptible to S. exigua multiple nucleopolyhedrovirus (SeMNPV) and Autographa californica MNPV (AcMNPV). Therefore, a highly virulent SeMNPV strain, SeMNPV-1, had been successfully isolated and propagated in NTU-SE cells. We conclude that the NTU-SE cell line will be a useful tool for the selection and mass production of highly virulent SeMNPV strains for the S. exigua biocontrol and the baculovirus based recombinant protein expression systems.  相似文献   

10.
A new cell line from the larval hemocytes of H. armigera was established in Grace's medium modified by adding lactalbumin hydrolysate and yeastolate (3.3g/l), and supplemented with fetal bovine serum (20%). The cell line was designated as NIV-HA-1195. The cell population at P-78 consisted mainly of epithelial-like cells (89.36%), fibroblast-like cells (8.31%) and giant cells (2.13%). The population doubling time was 96hr at P-8, 60hr at P-43. The chromosome number ranged from 45 to 200. The cell line is susceptible to the baculoviruses, Autographa californica nucleopolyhedrovirus (AcNPV), Spodoptera litura NPV and the homologous HaNPV. Isoenzyme profile and results of 16S rRNA heteroduplex analysis clearly indicated the species specificity of the new cell line.  相似文献   

11.
This study examined the effects of the native cactus moth borer, Melitara prodenialis, and the invasive cactus moth borer, Cactoblastis cactorum, on two common cactus species, Opuntia stricta and O. humifusa at coastal and inland locations in central Florida. Opuntia stricta were present only at coastal sites and O. humifusa were present at coastal and inland sites. Throughout the duration of the study, coastal plants were subject to damage solely by C. cactorum and inland plants solely by M. prodenialis. Results showed marginally significantly higher numbers of eggsticks on O. stricta than O. humifusa and significantly higher numbers at coastal sites than at inland sites. There was also significantly higher moth damage on O. stricta than O. humifusa and at coastal sites than inland sites, but not significantly so. However, there was a higher level of plant mortality for O. humifusa than for O. stricta and a significantly higher level of cactus mortality at inland sites when compared to coastal sites. This increased mortality may be due to increased attack by true bugs, Chelinidea vittiger, and by Dactylopius sp., combined with attack by M. prodenialis. Inland plants also tended to be smaller than coastal plants and could be more susceptible to the combined effects of all insects. Further long-term research on coastal cactus survival when attacked and unattacked by Cactoblastis is necessary to fully determine the effects of this moth on Opuntia survival.  相似文献   

12.
Here we describe the establishment of a new cell line, NTU-MV, derived from pupal tissues of an economically important pest, the legume pod borer Maruca vitrata. This cell line contained four major cell types: polymorphic cells, round cells, spindle-shaped cells, and comma cells. The doubling time of MV cells in TNM-FH medium supplemented with 8% FBS at 28 degrees C was 27h. The chromosome numbers of MV cells varied widely from 16 to 268. Compared to other insect cell lines, the MV cell line produced distinct isozyme patterns with esterase, malate dehydrogenase (MDH), and lactate dehydrogenase (LDH). Confirmation that NTU-MV was derived from M. vitrata was demonstrated by showing that the sequence of the internal transcribed spacer regions (ITS) of the MV cells was 98% identical to that of M. vitrata larvae. Two NTU-MV cell strains, NTU-MV1 and NTU-MV56, were selected based on susceptibility to MaviMNPV (M. vitrata multiple nucleopolyhedrovirus). NTU-MV, MV1, and MV56 cells showed a high susceptibility to MaviMNPV and produced high yields of polyhedra (47-50OBs/cell, 4x10(7)-5.96x10(7)OBs/ml) after 2 weeks of MaviMNPV infection. We conclude that the NTU-MV cell line will be a useful tool for studying MaviMNPV as well as for the mass production of MaviMNPV polyhedra for the biocontrol of M. vitrata.  相似文献   

13.
Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) is an invasive herbivore that poses a serious risk to Opuntia cacti in North America. Knowledge of the flight behavior of the cactus moth is crucial for a better understanding of natural dispersal, and for both monitoring and control. We used computer-linked flight mills to investigate diel flight activity and flight performance in relation to gender, age, mating status, and body size. Maximal flight activity for both mated and unmated moths occurred during twilight, whereas flight activity was low during photophase. The total distance flown and the number of initiated flights within a diel cycle were higher in both unmated and mated females than in males, but the longest single flight was similar in both genders. These findings suggest that pheromone trap captures of males likely indicate the simultaneous presence of females and that mated females might even be in areas where males are not detected yet. Flight performance heterogeneity was large, with a small portion of the population (both males and females) performing long unbroken flights, whereas the majority made short flights. Females had higher pupal and adult body size and shorter longevity than males. A few individuals, particularly young mated females, flying long distances may be important for active spread of a population and the colonization of new habitats. Implications of this study in the control of the cactus moth by using the sterile insect technique are discussed.  相似文献   

14.
Summary A cell line derived from the larval-fat body tissues of the wax moth, Galleria mellonella Linne, was established in MGM-450 medium. The cells grew in suspension and were mainly spherical in shape. Population doubling time was between 1.4 and 1.7 d over a range of 15 to 35°C, and the maximum growth rate was at 25°C. The chromosome number ranged from 70–239, with a mode of 170. The cells were sensitive to 20-hydroxyecdysone, which stimulated their growth and induced morphological changes. The cell line was designated GaMe-LF1.  相似文献   

15.
1. A cactus, Opuntia stricta , has invaded almost 16 000 ha of conserved, natural habitatand has become a major weed problem in Kruger National Park (KNP), South Africa.
2. The main objectives in the control of O. stricta are to reduce the density of the weed and to curb long-range dispersal of seeds by preventing young plants from reaching the size (28 cladodes) at which they start to produce fruits.
3. Herbicides have failed to provide satisfactory control of O. stricta because the weed infestations are replenished from seeds in the soil and from small plants that are overlooked during spraying.
4. A phycitid moth, Cactoblastis cactorum , was released in KNP during 1988 in an attempt to control O. stricta biologically.
5. Population counts of the biological control agent and of the weed over a 5-year period showed that, even though C. cactorum has not provided complete control of O. stricta in KNP, the moderate levels of larval damage have stunted the growth of O. stricta and have considerably extended the time that the young plants take to reach sexual maturity.
6. Comparisons of modelled (i.e. with no C. cactorum ) and actual populations of O. stricta showed that C. cactorum is making a substantial contribution to the control of O. stricta in residual infestations of the weed that have been treated with herbicides.
7. The need for long-term evaluation studies in biological weed control is demon strated by the development of an integrated management programme for effective control of O. stricta .  相似文献   

16.
Summary A newly established cell line was obtained from the culture of embryonic cells of the potato tuber moth Phthorimaea operculella in low temperature conditions (19° C) using modified Grace’s medium supplemented with 10% fetal bovine serum. The population doubling time was about 80 h when cells were cultivated at 19°C and 38 h at 27° C. The cell line had a relatively homogeneous population consisting of various sized spherical cells. The cells were cultivated for more than 25 passages. Their polypeptidic profile was different from profiles of other P. operculella cell lines we previously described and from other lepidopteran cells. The new cell line was designated ORS-Pop-95. The complete replication of the potato tuber moth granulosis virus (PTM GV) was obtained in vitro by both viral infection and DNA transfection. PTM GV multiplied at a significant level during several passages of the cell line that was maintained at 19° C. As long as the cells were maintained at 19° C, virus multiplication could also be obtained at the same rate at 27° C. To compare PTM GV multiplied both in vivo and in vitro, we used morphological identification, serological, DNA probe diagnosis and endonuclease digest profile analysis and confirmed the identity of the virus.  相似文献   

17.
When the three major structural proteins, VP2, VP6, and VP7, of rotavirus are co-expressed in insect cells infected with recombinant baculoviruses, they self-assemble into triple-layered virus-like particles (VLPs) that are similar in morphology to native rotavirus. In order to establish the most favorable conditions for the synthesis of rotavirus VLPs, we have compared the kinetics of 2/6/7-VLP synthesis in two different insect cell lines: High Five cells propagated in Excell 405 medium and Spodoptera frugiperda 9 cells in Excell 400 medium. The majority of VLPs produced in both cell lines were released into the culture medium, and these released VLPs were predominantly triple-layered and were found to be stable for the period of six or seven days examined. The optimal synthesis of VLPs depended upon the cell line and the culture medium used as well as the time of harvesting infected cell cultures. The highest yield of VLPs was obtained from High Five cultures in the late phase of infection when the yield was at least 5-fold higher than that from S. frugiperda 9 cultures on a per cell basis. Our results demonstrate the usefulness of High Five cells for the production of VLPs as potential rotavirus subunit vaccines.  相似文献   

18.
The baculovirus expression system has been considered as a highly efficient tool for the production of recombinant biopharmaceutical proteins. The recombinant antigenic glycoprotein GA733 is a cell surface protein that is strongly expressed in human colorectal cancer. Efficient virus titration should be established to achieve optimal multiplicity of infection (MOI) conditions, which are in turn essential for strong expression of the recombinant GA733 fused to the human immunoglobulin IgG Fc fragment (GA733‐Fc) in the baculovirus‐insect system. In the present study, the Sf9 cell line was transfected with plasmid DNA containing the GA733‐Fc expression cassette under the control of the baculovirus polyhedron promoter. MOI values (0.05, 0.1, 0.5, 1, and 3) were calculated based on both microscope observations and results of titration assay and then used to determine the optimum recombinant expression and harvested sample [cell culture media (CM) or cell lysate (CL)]. The pFastBac dual vector carrying the GA733‐Fc gene was constructed to express GA733‐Fc and used to generate recombinant baculoviruses. Western blotting results showed that recombinant protein expression was dependent on the MOI. In addition, CM and CL showed significant differences in protein synthesis and protein secretion capacities. Our findings suggested that our proposed titration method can be used for reliable calculation of MOI values, which significantly influence recombinant GA733‐Fc protein expression in the baculovirus‐insect cell system.  相似文献   

19.
A cell culture medium, IPL-52B, was preconditioned with host fat body and two insect cell lines to determine if they would support embryonic development of Microplitis croceipes in vitro. The medium was preconditioned with the cell line IPL-LdFB, derived from fat body of the gypsy moth, Lymantria dispar, cell line IAL-TND1, derived from imaginal discs of the cabbage looper, Trichoplusia ni, and whole fat body tissue from host Helicoverpa zea. A second cell culture medium, Excell 400, was preconditioned with only the cell line, IPL-LdFB. Pregerm band eggs were dissected from third instar host larvae and incubated in the conditioned medium for 20 h. Newly laid parasitoid eggs did not develop in unconditioned IPL-52B, but did develop to germ band stage in unconditioned Excell 400. The IPL-52B medium conditioned with both cell lines induced germ band formation, but only the L. dispar cell line (IPL-LdFB) promoted significant development to eclosion comparable to host far body tissue. Excell 400 medium preconditioned with the cell line, IPL-LdFB also supported development to eclosion.  相似文献   

20.
BACKGROUND: Although lentiviral vectors have been widely used for in vitro and in vivo gene therapy researches, there have been few studies systematically examining various conditions that may affect the determination of the number of viable vector particles in a vector preparation and the use of Multiplicity of Infection (MOI) as a parameter for the prediction of gene transfer events. METHODS: Lentiviral vectors encoding a marker gene were packaged and supernatants concentrated. The number of viable vector particles was determined by in vitro transduction and fluorescent microscopy and FACs analyses. Various factors that may affect the transduction process, such as vector inoculum volume, target cell number and type, vector decay, variable vector - target cell contact and adsorption periods were studied. MOI between 0-32 was assessed on commonly used cell lines as well as a new cell line. RESULTS: We demonstrated that the resulting values of lentiviral vector titre varied with changes of conditions in the transduction process, including inoculum volume of the vector, the type and number of target cells, vector stability and the length of period of the vector adsorption to target cells. Vector inoculum and the number of target cells determine the frequencies of gene transfer event, although not proportionally. Vector exposure time to target cells also influenced transduction results. Varying these parameters resulted in a greater than 50-fold differences in the vector titre from the same vector stock. Commonly used cell lines in vector titration were less sensitive to lentiviral vector-mediated gene transfer than a new cell line, FRL 19. Within 0-32 of MOI used transducing four different cell lines, the higher the MOI applied, the higher the efficiency of gene transfer obtained. CONCLUSION: Several variables in the transduction process affected in in vitro vector titration and resulted in vastly different values from the same vector stock, thus complicating the use of MOI for predicting gene transfer events. Commonly used target cell lines underestimated vector titre. However, within a certain range of MOI, it is possible that, if strictly controlled conditions are observed in the vector titration process, including the use of a sensitive cell line, such as FRL 19 for vector titration, lentivector-mediated gene transfer events could be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号