首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ito M  Gilbert CD 《Neuron》1999,22(3):593-604
The response properties of cells in the primary visual cortex (V1) were measured while the animals directed their attention either to the position of the neuron's receptive field (RF), to a position away from the RF (focal attention), or to four locations in the visual field (distributed attention). Over the population, varying attentional state had no significant effect on the response to an isolated stimulus within the RF but had a large influence on the facilitatory effects of contextual lines. We propose that the attentional modulation of contextual effects represents a gating of long range horizontal connections within area V1 by feedback connections to V1 and that this gating provides a mechanism for shaping responses under attention to stimulus configuration.  相似文献   

2.
Functional magnetic resonance imaging (fMRI) was used while normal human volunteers engaged in simple detection and discrimination tasks, revealing separable modulations of early visual cortex associated with spatial attention and task structure. Both modulations occur even when there is no change in sensory stimulation. The modulation due to spatial attention is present throughout the early visual areas V1, V2, V3, and VP, and varies with the attended location. The task structure activations are strongest in V1 and are greater in regions that represent more peripheral parts of the visual field. Control experiments demonstrate that the task structure activations cannot be attributed to visual, auditory, or somatosensory processing, the motor response for the detection/discrimination judgment, or oculomotor responses such as blinks or saccades. These findings demonstrate that early visual areas are modulated by at least two types of endogenous signals, each with distinct cortical distributions.  相似文献   

3.
When attention is directed to a region of space, visual resolution at that location flexibly adapts, becoming sharper to resolve fine-scale details or coarser to reflect large-scale texture and surface properties [1]. By what mechanism does attention improve spatial resolution? An improved signal-to-noise ratio (SNR) at the attended location contributes [2], because of retinotopically specific signal gain [3], [4], [5], [6], [7], [8], [9] and [10]. Additionally, attention could sharpen position tuning at the neural population level, so that adjacent objects activate more distinct regions of the visual cortex. A dual mechanism involving both signal gain and sharpened position tuning would be highly efficient at improving visual resolution, but there is no direct evidence that attention can narrow the position tuning of population responses. Here, we compared the spatial spread of the fMRI BOLD response for attended versus ignored stimuli. The activity produced by adjacent stimuli overlapped less when subjects were attending at their locations versus attending elsewhere, despite a stronger peak response with attention. Our results show that even as early as primary visual cortex (V1), spatially directed attention narrows the tuning of population-coded position representations.  相似文献   

4.
E Scheller  C Büchel  M Gamer 《PloS one》2012,7(7):e41792
Diagnostic features of emotional expressions are differentially distributed across the face. The current study examined whether these diagnostic features are preferentially attended to even when they are irrelevant for the task at hand or when faces appear at different locations in the visual field. To this aim, fearful, happy and neutral faces were presented to healthy individuals in two experiments while measuring eye movements. In Experiment 1, participants had to accomplish an emotion classification, a gender discrimination or a passive viewing task. To differentiate fast, potentially reflexive, eye movements from a more elaborate scanning of faces, stimuli were either presented for 150 or 2000 ms. In Experiment 2, similar faces were presented at different spatial positions to rule out the possibility that eye movements only reflect a general bias for certain visual field locations. In both experiments, participants fixated the eye region much longer than any other region in the face. Furthermore, the eye region was attended to more pronouncedly when fearful or neutral faces were shown whereas more attention was directed toward the mouth of happy facial expressions. Since these results were similar across the other experimental manipulations, they indicate that diagnostic features of emotional expressions are preferentially processed irrespective of task demands and spatial locations. Saliency analyses revealed that a computational model of bottom-up visual attention could not explain these results. Furthermore, as these gaze preferences were evident very early after stimulus onset and occurred even when saccades did not allow for extracting further information from these stimuli, they may reflect a preattentive mechanism that automatically detects relevant facial features in the visual field and facilitates the orientation of attention towards them. This mechanism might crucially depend on amygdala functioning and it is potentially impaired in a number of clinical conditions such as autism or social anxiety disorders.  相似文献   

5.
BACKGROUND: Attending to the spatial location or to nonspatial features of visual stimuli can modulate neuronal responses in primate visual cortex. The modulation by spatial attention changes the gain of sensory neurons and strengthens the representation of attended locations without changing neuronal selectivities such as directionality, i.e., the ratio of responses to preferred and anti-preferred directions of motion. Whether feature-based attention acts in a similar manner is unknown. RESULTS: To clarify this issue, we recorded the responses of 135 direction-selective neurons in the middle temporal area (MT) of two macaques to an unattended moving random dot pattern (the distractor) positioned inside a neuron's receptive field while the animals attended to a second moving pattern positioned in the opposite hemifield. Responses to different directions of the distractor were modulated by the same factor (approximately 12%) as long as the attended direction remained unchanged. On the other hand, systematically changing the attended direction from a neuron's preferred to its anti-preferred direction caused a systematic change of the attentional modulation from an enhancement to a suppression, increasing directionality by about 20%. CONCLUSIONS: The results show that (1) feature-based attention exerts a multiplicative modulation upon neuronal responses and that the strength of this modulation depends on the similarity between the attended feature and the cell's preferred feature, in line with the feature-similarity gain model, and (2) at the level of the neuronal population, feature-based attention increases the selectivity for attended features by increasing the responses of neurons preferring this feature value while decreasing responses of neurons tuned to the opposite feature value.  相似文献   

6.
Cohen MR  Maunsell JH 《Neuron》2011,70(6):1192-1204
Visual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and nonspatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can comodulate local neuronal populations, whereas feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, whereas spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons.  相似文献   

7.
Computational modelling of visual attention   总被引:3,自引:0,他引:3  
Five important trends have emerged from recent work on computational models of focal visual attention that emphasize the bottom-up, image-based control of attentional deployment. First, the perceptual saliency of stimuli critically depends on the surrounding context. Second, a unique 'saliency map' that topographically encodes for stimulus conspicuity over the visual scene has proved to be an efficient and plausible bottom-up control strategy. Third, inhibition of return, the process by which the currently attended location is prevented from being attended again, is a crucial element of attentional deployment. Fourth, attention and eye movements tightly interplay, posing computational challenges with respect to the coordinate system used to control attention. And last, scene understanding and object recognition strongly constrain the selection of attended locations. Insights from these five key areas provide a framework for a computational and neurobiological understanding of visual attention.  相似文献   

8.
Distributed coding of sound locations in the auditory cortex   总被引:3,自引:0,他引:3  
Although the auditory cortex plays an important role in sound localization, that role is not well understood. In this paper, we examine the nature of spatial representation within the auditory cortex, focusing on three questions. First, are sound-source locations encoded by individual sharply tuned neurons or by activity distributed across larger neuronal populations? Second, do temporal features of neural responses carry information about sound-source location? Third, are any fields of the auditory cortex specialized for spatial processing? We present a brief review of recent work relevant to these questions along with the results of our investigations of spatial sensitivity in cat auditory cortex. Together, they strongly suggest that space is represented in a distributed manner, that response timing (notably first-spike latency) is a critical information-bearing feature of cortical responses, and that neurons in various cortical fields differ in both their degree of spatial sensitivity and their manner of spatial coding. The posterior auditory field (PAF), in particular, is well suited for the distributed coding of space and encodes sound-source locations partly by modulations of response latency. Studies of neurons recorded simultaneously from PAF and/or A1 reveal that spatial information can be decoded from the relative spike times of pairs of neurons - particularly when responses are compared between the two fields - thus partially compensating for the absence of an absolute reference to stimulus onset.  相似文献   

9.
Cyclic AMP (cAMP) elevation causes diverse types of cultured cells to round partially and develop arborized cell processes. Renal glomerular mesangial cells are smooth, muscle-like cells and in culture contain abundant actin microfilament cables that insert into substratum focal contacts. cAMP elevation causes adhesion loss, microfilament cable fragmentation, and shape change in cultured mesangial cells. We investigated the roles of the classical vitronectin (αVβ3 integrin) and fibronectin (α5β1 integrin) receptors in these changes. Mesangial cells on vitronectin-rich substrata contained microfilament cables that terminated in focal contacts that stained with antibodies to vitronectin receptor. cAMP elevation caused loss of focal contact and associated vitronectin receptor. Both fibronectin and its receptor stained in a fibrillary pattern at the cell surface under control conditions but appeared aggregated along the cell processes after cAMP elevation. This suggested that cAMP elevation caused loss of adhesion mediated by vitronectin receptor but not by fibronectin receptor. We plated cells onto fibronectin-coated slides to test the effect of ligand immobilization on the cellular response to cAMP. On fibronectin-coated slides fibronectin receptor was observed in peripheral focal contacts where actin filaments terminated, as seen with vitronectin receptor on vitronectin-coated substrata, and in abundant linear arrays distributed along microfilaments as well. Substratum contacts mediated by fibronectin receptor along the length of actin filaments have been termed fibronexus contacts. After cAMP elevation, microfilaments fragmented and fibronectin receptor disappeared from peripheral focal contacts, but the more central contacts along residual microfilament fragments appeared intact. Also, substratum adhesion was maintained after cAMP elevation on fibronectin—but not on vitronectincoated surfaces. Although other types of extracellular matrix receptors may also be involved, our observations suggest that cAMP regulates adhesion at focal contacts but not at fibronexus-type extracellular matrix contacts. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Attention increases sensitivity of V4 neurons   总被引:25,自引:0,他引:25  
When attention is directed to a location in the visual field, sensitivity to stimuli at that location is increased. At the neuronal level, this could arise either through a multiplicative increase in firing rate or through an increase in the effective strength of the stimulus. To test conflicting predictions of these alternative models, we recorded responses of V4 neurons to stimuli across a range of luminance contrasts and measured the change in response when monkeys attended to them in order to discriminate a target stimulus from nontargets. Attention caused greater increases in response at low contrast than at high contrast, consistent with an increase in effective stimulus strength. On average, attention increased the effective contrast of the attended stimulus by a factor of 1.51, an increase of 51% of its physical contrast.  相似文献   

11.
Spatial visual attention modulates the first negative-going deflection in the human averaged event-related potential (ERP) in response to visual target and non-target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non-target stimuli presented at five attended and non-attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus-attention conditions and decomposed the non-target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1aR and N1aL) was evoked by the left and right visual field stimuli, respectively. Component N1aR peaked ca. 9 ms earlier than N1aL. Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were no reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio-temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.  相似文献   

12.
Itti and Koch’s (Vision Research 40:1489–1506, 2000) saliency-based visual attention model is a broadly accepted model that describes how attention processes are deployed in the visual cortex in a pure bottom-up strategy. This work complements their model by modifying the color feature calculation. Evidence suggests that S-cone responses are elicited in the same spatial distribution and have the same sign as responses to M-cone stimuli; these cells are tentatively referred to as red-cyan. For other cells, the S-cone input seems to be aligned with the L-cone input; these cells might be green-magenta cells. To model red-cyan and green-magenta double-opponent cells, we implement a center-surround difference approach of the aforementioned model. The resulting color maps elicited enhanced responses to color salient stimuli when compared to the classic ones at high statistical significance levels. We also show that the modified model improves the prediction of locations attended by human viewers.  相似文献   

13.
Prior research has often linked anxiety to attentional vigilance for threat using the dot probe task, which presents probes in spatial locations that were or were not preceded by a putative threat stimulus. The present study investigated the impact of worry on threat vigilance by administering this task during a worry condition and during a mental arithmetic control condition to 56 undergraduate students scoring in the low normal range on a measure of chronic worry. The worry induction was associated with faster responses than arithmetic to probes in the attended location following threat words, indicating the combined influence of worry and threat in facilitating attention. Within the worry condition, responses to probes in the attended location were faster for trials containing threat words than for trials with only neutral words, whereas the converse pattern was observed for responses to probes in the unattended location. This connection between worry states and attentional capture by threat may be central to understanding the impact of hypervigilance on information processing in anxiety and its disorders.  相似文献   

14.
The dark side of visual attention   总被引:5,自引:0,他引:5  
The limited capacity of neural processing restricts the number of objects and locations that can be attended to. Selected events are readily enhanced: the bright side of attention. However, such focal processing comes at a cost, namely, functional blindness for unattended events: the dark side of visual attention. Recent work has advanced our understanding of the neural mechanisms that facilitate visual processing, as well as the neural correlates of unattended, unconscious visual events. Also, new results have revealed how attentional deployment is optimized by non-visual factors such as behavioral set, past experience, and emotional salience.  相似文献   

15.
Liu T  Larsson J  Carrasco M 《Neuron》2007,55(2):313-323
How does feature-based attention modulate neural responses? We used adaptation to quantify the effect of feature-based attention on orientation-selective responses in human visual cortex. Observers were adapted to two superimposed oblique gratings while attending to one grating only. We measured the magnitude of attention-induced orientation-selective adaptation both psychophysically, by the behavioral tilt aftereffect, and physiologically, using fMRI response adaptation. We found evidence for orientation-selective attentional modulation of neuronal responses-a lower fMRI response for the attended than the unattended orientation-in multiple visual areas, and a significant correlation between the magnitude of the tilt aftereffect and that of fMRI response adaptation in V1, the earliest site of orientation coding. These results show that feature-based attention can selectively increase the response of neuronal subpopulations that prefer the attended feature, even when the attended and unattended features are coded in the same visual areas and share the same retinotopic location.  相似文献   

16.
This study examined the effects of attention on forming perceptual units by proximity grouping and by uniform connectedness (UC). In Experiment 1 a row of three global letters defined by either proximity or UC was presented at the center of the visual field. Participants were asked to identify the letter in the middle of stimulus arrays while ignoring the flankers. The stimulus onset asynchrony (SOA) between stimulus arrays and masks varied between 180 and 500 ms. We found that responses to targets defined by proximity grouping were slower than to those defined by UC at median SOAs but there were no differences at short or long SOAs. Incongruent flankers slowed responses to targets and this flanker compatibility effect was larger for UC than for proximity-defined flankers. Experiment 2 examined the effects of spatial precueing on discrimination responses to proximity- and UC-defined targets. The advantage for targets defined by UC over targets defined by proximity grouping was greater at uncued relative to cued locations. The results suggest that the advantage for UC over proximity grouping in forming perceptual units is contingent on the stimuli not being fully attended, and that paying attention to the stimuli differentially benefits proximity grouping.  相似文献   

17.
In order to perceive complex visual scenes, the human perceptual system has to organize discrete enti-ties in the visual field into chunks or perceptual units for higher-level processing. Perceptual organization is governed by Gestalt principles such as proximity, similarity, and continuity[1]. Thus spatially close ob-jects tend to be grouped together, as do elements that are similar to one another. Grouping based on the Ge-stalt laws (particularly proximity) is critical for the perception of…  相似文献   

18.
Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons'' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception.  相似文献   

19.
Primary visual cortex (V1) was implicated as an important candidate for the site of perceptual suppression in numerous psychophysical and imaging studies. However, neurophysiological results in awake monkeys provided evidence for competition mainly between neurons in areas beyond V1. In particular, only a moderate percentage of neurons in V1 were found to modulate in parallel with perception with magnitude substantially smaller than the physical preference of these neurons. It is yet unclear whether these small modulations are rooted from local circuits in V1 or influenced by higher cognitive states. To address this question we recorded multi-unit spiking activity and local field potentials in area V1 of awake and anesthetized macaque monkeys during the paradigm of binocular flash suppression. We found that a small but significant modulation was present in both the anesthetized and awake states during the flash suppression presentation. Furthermore, the relative amplitudes of the perceptual modulations were not significantly different in the two states. We suggest that these early effects of perceptual suppression might occur locally in V1, in prior processing stages or within early visual cortical areas in the absence of top-down feedback from higher cognitive stages that are suppressed under anesthesia.  相似文献   

20.
Texture discontinuities are a fundamental cue by which the visual system segments objects from their background. The neural mechanisms supporting texture-based segmentation are therefore critical to visual perception and cognition. In the present experiment we employ an EEG source-imaging approach in order to study the time course of texture-based segmentation in the human brain. Visual Evoked Potentials were recorded to four types of stimuli in which periodic temporal modulation of a central 3° figure region could either support figure-ground segmentation, or have identical local texture modulations but not produce changes in global image segmentation. The image discontinuities were defined either by orientation or phase differences across image regions. Evoked responses to these four stimuli were analyzed both at the scalp and on the cortical surface in retinotopic and functional regions-of-interest (ROIs) defined separately using fMRI on a subject-by-subject basis. Texture segmentation (tsVEP: segmenting versus non-segmenting) and cue-specific (csVEP: orientation versus phase) responses exhibited distinctive patterns of activity. Alternations between uniform and segmented images produced highly asymmetric responses that were larger after transitions from the uniform to the segmented state. Texture modulations that signaled the appearance of a figure evoked a pattern of increased activity starting at ~143 ms that was larger in V1 and LOC ROIs, relative to identical modulations that didn't signal figure-ground segmentation. This segmentation-related activity occurred after an initial response phase that did not depend on the global segmentation structure of the image. The two cue types evoked similar tsVEPs up to 230 ms when they differed in the V4 and LOC ROIs. The evolution of the response proceeded largely in the feed-forward direction, with only weak evidence for feedback-related activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号