首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lacking any discernible sequence similarity, interleukin-34 (IL-34) and colony stimulating factor 1 (CSF-1) signal through a common receptor CSF-1R on cells of mononuclear phagocyte lineage. Here, the crystal structure of dimeric IL-34 reveals a helical cytokine fold homologous to CSF-1, and we further show that the complex architecture of IL-34 bound to the N-terminal immunoglobulin domains of CSF-1R is similar to the CSF-1/CSF-1R assembly. However, unique conformational adaptations in the receptor domain geometry and intermolecular interface explain the cross-reactivity of CSF-1R for two such distantly related ligands. The docking adaptations of the IL-34 and CSF-1 quaternary complexes, when compared to the stem cell factor assembly, draw a common evolutionary theme for transmembrane signaling. In addition, the structure of IL-34 engaged by a Fab fragment reveals the mechanism of a neutralizing antibody that can help deconvolute IL-34 from CSF-1 biology, with implications for therapeutic intervention in diseases with myeloid pathogenic mechanisms.  相似文献   

2.
The CSF-1 receptor (CSF-1R) regulates CNS microglial development. However, the localization and developmental roles of this receptor and its ligands, IL-34 and CSF-1, in the brain are poorly understood. Here we show that compared to wild type mice, CSF-1R-deficient (Csf1r-/-) mice have smaller brains of greater mass. They further exhibit an expansion of lateral ventricle size, an atrophy of the olfactory bulb and a failure of midline crossing of callosal axons. In brain, IL-34 exhibited a broader regional expression than CSF-1, mostly without overlap. Expression of IL-34, CSF-1 and the CSF-1R were maximal during early postnatal development. However, in contrast to the expression of its ligands, CSF-1R expression was very low in adult brain. Postnatal neocortical expression showed that CSF-1 was expressed in layer VI, whereas IL-34 was expressed in the meninges and layers II-V. The broader expression of IL-34 is consistent with its previously implicated role in microglial development. The differential expression of CSF-1R ligands, with respect to CSF-1R expression, could reflect their CSF-1R-independent signaling. Csf1r-/- mice displayed increased proliferation and apoptosis of neocortical progenitors and reduced differentiation of specific excitatory neuronal subtypes. Indeed, addition of CSF-1 or IL-34 to microglia-free, CSF-1R-expressing dorsal forebrain clonal cultures, suppressed progenitor self-renewal and enhanced neuronal differentiation. Consistent with a neural developmental role for the CSF-1R, ablation of the Csf1r gene in Nestin-positive neural progenitors led to a smaller brain size, an expanded neural progenitor pool and elevated cellular apoptosis in cortical forebrain. Thus our results also indicate novel roles for the CSF-1R in the regulation of corticogenesis.  相似文献   

3.
Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats.  相似文献   

4.
5.
The hematopoietic colony stimulating factor-1 receptor (CSF-1R or FMS) is essential for the cellular repertoire of the mammalian immune system. Here, we report a structural and mechanistic consensus for the assembly of human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts and striking structural plasticity at the extremities of the complex. Studies by small-angle X-ray scattering of unliganded hCSF-1R point to large domain rearrangements upon CSF-1 binding, and provide structural evidence for the relevance of receptor predimerization at the cell surface. Comparative structural and binding studies aiming to dissect the assembly principles of human and mouse CSF-1R complexes, including a quantification of the CSF-1/CSF-1R species cross-reactivity, show that bivalent cytokine binding to receptor coupled to ensuing receptor-receptor interactions are common denominators in extracellular complex formation.  相似文献   

6.
CSF-1 stimulates the survival, proliferation, and differentiation of mononuclear phagocytes and may also play a role in placental development. The expression of CSF-1 and the CSF-1 receptor (CSF-1R) and their regulation were examined in cultures of mouse mesangial cells (MC). The concentration of CSF-1 in the medium of cultured MC increased linearly with time over 24 h. IFN-gamma stimulated and dibutyryl cyclic AMP inhibited CSF-1 production in a dose-dependent manner. MC expression of CSF-1 mRNA was shown by Northern blot analysis, and CSF-1 mRNA levels were increased within 4 h of IFN-gamma addition and inhibited within 4 h of dibutyryl cyclic AMP addition. Indirect immunofluorescence indicated that 90% of the untreated cultured MC expressed CSF-1. In addition, CSF-1R expression by MC was demonstrated by immunofluorescence with anti-receptor antibody, specific binding of [125I] CSF-1, and expression of the CSF-1R mRNA by Northern blot analysis. Thus, mouse MC, specialized pericytes of non-bone marrow origin, not only produce CSF-1 but also express receptors for CSF-1. The effects of CSF-1 on MC may be important in the control of immune function in the glomerulus.  相似文献   

7.
A retroviral vector encoding the receptor for human colony-stimulating factor-1 (CSF-1) was introduced into murine myeloid FDC-P1 cells which require interleukin-3 (IL-3) for their proliferation and survival in culture. Cells expressing the CSF-1 receptor (CSF-1R), selected by fluorescence-activated cell sorting in the continued presence of murine IL-3, formed colonies in semisolid medium and were able to proliferate continuously in liquid cultures containing human recombinant CSF-1. Thus, although they do not synthesize endogenous murine CSF-1R, FDC-P1 cells express the downstream components of the CSF-1 mitogenic pathway necessary for its signal-response coupling. After receptor transduction, slowly proliferating factor-independent variants that produced neither CSF-1 nor growth factors able to support the proliferation of parental FDC-P1 cells also arose. When the human CSF-1R was expressed in FDC-P1 cells under the control of an inducible metallothionein promoter, the frequencies of both CSF-1-responsive and factor-independent variants increased after heavy-metal treatment. In addition, a monoclonal antibody to human CSF-1R arrested colony formation by both the CSF-1-dependent and factor-independent cells but did not affect their growth in response to IL-3. Therefore, the induction of both the CSF-1-dependent and factor-independent phenotypes depended on expression of the transduced human CSF-1R.  相似文献   

8.
The mouse hematopoietic cell line, 32D, was transfected with c-fms, which encodes for the CSF-1 receptor, a tyrosine kinase (TK). In the absence of CSF-1, transfected cells show moderate levels of arachidonic acid (AA) release and produce a substantial amount of prostaglandin E2 (PGE2) in comparison with the original cell line. Exposure of transfected cells to CSF-1, while inducing a substantial increase in arachidonate release, nevertheless resulted in inhibition of PGE2 production. Addition of ST638, a tyrosine kinase inhibitor, to cells transfected with c-fms in the absence of CSF-1 inhibited PGE2 production within 10-60 min. Its addition to the same cells in the presence of CSF-1 induced an opposite effect, but required longer treatment (24 h). In either cell type, AA release was not affected by this agent. These data indicate that CSF-1 may regulate cyclooxygenase activity. The different effect of CSF-1 receptor on PGE2 production in the presence or absence of CSF-1 and the opposite effect of a tyrosine kinase inhibitor on PGE2 suggest that both the receptor alone or the receptor-ligand complex may transduce an active, but different, signal through tyrosine phosphorylation. CSF-1 receptor and CSF-1 may exert separate, but related, effects on phospholipase A2 and cyclooxygenase activity which, in concert, or along with other tyrosine kinases, regulate prostaglandin production.  相似文献   

9.
Breast cancer is the second leading cause of cancer-related deaths in western countries. Colony-Stimulating Factor-1 (CSF-1) and its receptor (CSF-1R) regulate macrophage and osteoclast production, trophoblast implantation and mammary gland development. The expression of CSF-1R and/or CSF-1 strongly correlates with poor prognosis in several human epithelial tumors, including breast carcinomas. We demonstrate that CSF-1 and CSF-1R are expressed, although at different levels, in 16/17 breast cancer cell lines tested with no differences among molecular subtypes. The role of CSF-1/CSF-1R in the proliferation of breast cancer cells was then studied in MDAMB468 and SKBR3 cells belonging to different subtypes. CSF-1 administration induced ERK1/2 phosphorylation and enhanced cell proliferation in both cell lines. Furthermore, the inhibition of CSF-1/CSF-1R signaling, by CSF-1R siRNA or imatinib treatment, impaired CSF-1 induced ERK1/2 activation and cell proliferation. We also demonstrate that c-Jun, cyclin D1 and c-Myc, known for their involvement in cell proliferation, are downstream CSF-1R in breast cancer cells. The presence of a proliferative CSF-1/CSF-1R autocrine loop involving ERK1/2 was also found. The wide expression of the CSF-1/CSF-1R pair across breast cancer cell subtypes supports CSF-1/CSF-1R targeting in breast cancer therapy.  相似文献   

10.
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We review, the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.The glycoprotein, colony-stimulating factor-1 (CSF-1), also known as macrophage-CSF (M-CSF), was the first of the CSFs to be purified (Stanley and Heard 1977) and was shown to stimulate the formation of colonies of macrophages (Stanley et al. 1978). This led to the identification (Guilbert and Stanley 1980) and purification (Yeung et al. 1987) of the CSF-1 receptor (CSF-1R) and the demonstration that it possessed intrinsic tyrosine kinase activity (Yeung et al. 1987). It was subsequently shown to be identical to the c-fms proto-oncoprotein (Sherr et al. 1985) previously studied by Sherr and colleagues (Rettenmier et al. 1985). The c-fms cDNA was cloned and shown to encode a typical class III receptor tyrosine kinase (RTK) (Coussens et al. 1986).The CSF-1R plays a central role in many diseases. Dominant inactivating mutations in the CSF-1R lead to adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (Rademakers et al. 2011; Nicholson et al. 2013). Inappropriate expression of the CSF-1R contributes to the development of leukemias and lymphomas, and autocrine and paracrine regulation of the CSF-1R enhances the progression and metastasis of solid tumors (reviewed in Pollard 2009; Chitu and Stanley 2014). In addition, regulation through the CSF-1R contributes to chronic inflammatory diseases (reviewed in Chitu and Stanley 2006; Chitu et al. 2012). This review focuses on the CSF-1R regulation and signaling in cells of the myeloid lineage.  相似文献   

11.
Highlights? Structural insights into the complete extracellular human IL-34:CSF-1R complex ? The C-terminal tail of hIL-34 is flexible and heavily O-linked glycosylated ? Inclusion of N-linked glycans drastically improves fitting of models to SAXS data ? Consensus principles for hCSF-1R activation by its two distinct cytokine ligands  相似文献   

12.
The active vitamin D(3)-metabolite 1,25(OH)(2)D(3) inhibits the interleukin 4/granulocyte-macrophage colony-stimulating factor (IL-4/GM-CSF)-induced differentiation of human monocytes into dendritic cells without altering survival. Colony-stimulating factor 1 (CSF-1) is an important survival factor for cells of the monocytic lineage. We therefore investigated whether the inhibitory activity of 1,25(OH)(2)D(3) is paralleled by a regulation of CSF-1 and its receptor. Purified human monocytes were cultured together with IL-4/GM-CSF in the presence of 1,25(OH)(2)D(3), its analogue tacalcitol, the low-affinity vitamin D receptor ligand 24,25(OH)(2)D(3), or the solvent ethanol for up to 5 days. Expression of CSF-1, CSF-1R, and GM-CSF mRNA was measured by RT-PCR. Protein secretion for CSF-1 was measured by ELISA, expression of CSF-1R by flow cytometry. The results showed that 1,25(OH)(2)D(3) and tacalcitol significantly up-regulated CSF-1 mRNA-expression and protein secretion in a dose-dependent manner. The effect of 1,25(OH)(2)D(3) occurred already after 1h of pre-treatment. In contrast, CSF-1R mRNA- and cell surface-expression was down-regulated simultaneously. The solvent ethanol and 24,25(OH)(2)D(3) were without effect. GM-CSF mRNA expression was not modulated in 1,25(OH)(2)D(3)-treated cells. These data point towards a distinct and specific regulation of CSF-1 and its receptor by 1,25(OH)(2)D(3) and its analogue tacalcitol in human monocytes which parallels the inhibition of differentiation into dendritic cells without altering survival.  相似文献   

13.
14.
W Li  E R Stanley 《The EMBO journal》1991,10(2):277-288
We have used kinetic and cross-linking approaches to study CSF-1-induced changes in the structure and function of the CSF-1R. Addition of CSF-1 to cells stimulates or stabilizes non-covalent CSF-1R dimerization resulting in activation of the CSF-1R kinase and the tyrosine phosphorylation of the receptor and certain cytoplasmic proteins. The non-covalent dimers become covalently linked via disulfide bonds and/or are subsequently further modified. These modified forms are selectively internalized. Pre-treatment of cells with the alkylating agent, iodoacetic acid (IAA), selectively inhibits covalent dimerization, modification and internalization but enhances protein tyrosine phosphorylation. It is proposed that ligand-induced non-covalent dimerization activates the CSF-1R kinase, whereas the covalent dimerization and subsequent modification lead to kinase inactivation, phosphotyrosine dephosphorylation and internalization of the receptor--ligand complex.  相似文献   

15.
16.
Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha.  相似文献   

17.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

18.
It has been recently shown that CSF-1 enhanced the constitutive expression of theIl6gene in resident mouse peritoneal macrophages (PMφ) but little is known about the pathways involved. In this report, we show that both constitutive and CSF-1-induced IL-6 release were enhanced and prolonged in the presence of the PKC inhibitors, staurosporine (SP) and its derivative, GF-109203X. Enhancement of constitutive IL-6 release required higher concentrations of inhibitors, while enhanced CSF-1-induced release was diminished when inhibitor concentrations exceeded defined limits. SP was also shown to activate constitutive IL-6 release by blood monocytes and elicited PMφ but had no effect on their responsiveness to CSF-1. Activation of PKC by exposure of resident PMφ to phorbol myristate acetate (PMA) also resulted in enhanced IL-6 release and PMA was shown to synergize with CSF-1. These data indicate that CSF-1 does not induceIl6gene expression by amplifying the constitutive pathway in all mononuclear phagocyte subpopulations. It exerts its effects independently of PKC, which may activateIl6gene expression in its own right by an alternative pathway. While CSF-1 and PKC are involved in separate pathways, the synergistic IL-6 response seen when PMA and CSF-1 interact suggests convergence of the two pathways. It is also apparent that multiple PKs, excluding PKC, may be involved in repressing constitutive and CSF-1-inducedIl6gene expression.  相似文献   

19.
20.
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号