首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
2.
Lin CH  MacGurn JA  Chu T  Stefan CJ  Emr SD 《Cell》2008,135(4):714-725
The diversity of plasma membrane (PM) proteins presents a challenge for the achievement of cargo-specific regulation of endocytosis. Here, we describe a family of proteins in yeast (ARTs, for arrestin-related trafficking adaptors) that function by targeting specific PM proteins to the endocytic system. Two members (Art1 and Art2) of the family were discovered in chemical-genetic screens, and they direct downregulation of distinct amino acid transporters triggered by specific stimuli. Sequence analysis revealed a total of nine ART family members in yeast. In addition to similarity to arrestins, the ARTs each contain multiple PY motifs. These motifs are required for recruitment of the Rsp5/Nedd4-like ubiquitin ligase, which modifies the cargoes as well as the ARTs. As a result, ubiquitinated cargoes are internalized and targeted to the vacuole (lysosome) for degradation. We propose that ARTs provide a cargo-specific quality-control pathway that mediates endocytic downregulation by coupling Rsp5/Nedd4 to diverse plasma membrane proteins.  相似文献   

3.
The multisubunit mTORC1 complex integrates signals from growth factors and nutrients to regulate protein synthesis, cell growth, and autophagy. To examine how endocytic trafficking might be involved in nutrient regulation of mTORC1, we perturbed specific endocytic trafficking pathways and measured mTORC1 activity using S6K1 as a readout. When early/late endosomal conversion was blocked by either overexpression of constitutively active Rab5 (Rab5CA) or knockdown of the Rab7 GEF hVps39, insulin- and amino acid–stimulated mTORC1/S6K1 activation were inhibited, and mTOR localized to hybrid early/late endosomes. Inhibition of other stages of endocytic trafficking had no effect on mTORC1. Overexpression of Rheb, which activates mTOR independently of mTOR localization, rescued mTORC1 signaling in cells expressing Rab5CA, whereas hyperactivation of endogenous Rheb in TSC2−/− MEFs did not. These data suggest that integrity of late endosomes is essential for amino acid– and insulin-stimulated mTORC1 signaling and that blocking the early/late endosomal conversion prevents mTOR from interacting with Rheb in the late endosomal compartment.  相似文献   

4.
Endocytosis resumes during late mitosis and is required for cytokinesis   总被引:1,自引:0,他引:1  
Recent work has underscored the importance of membrane trafficking events during cytokinesis. For example, targeted membrane secretion occurs at the cleavage furrow in animal cells, and proteins that regulate endocytosis also influence the process of cytokinesis. Nonetheless, the prevailing dogma is that endosomal membrane trafficking ceases during mitosis and resumes after cell division is complete. In this study, we have characterized endocytic membrane trafficking events that occur during mammalian cell cytokinesis. We have found that, although endocytosis ceases during the early stages of mitosis, it resumes during late mitosis in a temporally and spatially regulated pattern as cells progress from anaphase to cytokinesis. Using fixed and live cell imaging, we have found that, during cleavage furrow ingression, vesicles are internalized from the polar region and subsequently trafficked to the midbody area during later stages of cytokinesis. In addition, we have demonstrated that cytokinesis is inhibited when clathrin-mediated endocytosis is blocked using a series of dominant negative mutants. In contrast to previous thought, we conclude that endocytosis resumes during the later stages of mitosis, before cytokinesis is completed. Furthermore, based on our findings, we propose that the proper regulation of endosomal membrane traffic is necessary for the successful completion of cytokinesis.  相似文献   

5.
6.
The small GTPase Rab5 has been extensively studied in the context of endocytic trafficking because it is critical in the regulation of early endosome dynamics. In addition to this canonical role, evidence obtained in recent years implicates Rab5 in the regulation of cell migration. This novel role of Rab5 is based not only on an indirect relationship between cell migration and endosomal trafficking as separate processes, but also on the direct regulation of signaling proteins implicated in cell migration. However, the precise mechanisms underlying this connection have remained elusive. Recent studies have shown that the activation of Rab5 is a critical event for maintaining the dynamics of focal adhesions, which is fundamental in regulating not only cell migration but also tumor cell invasion.  相似文献   

7.
Integrin trafficking and the control of cell migration   总被引:10,自引:1,他引:9  
In the late 1980s and early 1990s, the observation that certain integrin heterodimers are continually internalized from the plasma membrane into endosomal compartments and subsequently recycled back to the cell surface indicated that the endocytic and recycling pathways have the potential to exert minute-to-minute control over integrin function. This insight has prompted others to study the regulation of integrin trafficking in more detail. This review aims to summarize the findings of studies revealing the molecular mechanisms controlling integrin traffic, particularly those providing indications as to how these processes contribute to cell migration and tumour cell invasiveness.  相似文献   

8.
The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.  相似文献   

9.
The chloride channel, ClC-2 is expressed ubiquitously and participates in multiple physiological processes. In particular, ClC-2 has been implicated in the regulation of neuronal chloride ion homeostasis and mutations in ClC-2 are associated with idiopathic generalized epilepsy. Despite the physiological and pathophysiological significance of this channel, its regulation remains incompletely understood. The functional expression of ClC-2 at the cell surface has been shown to be enhanced by depletion of cellular ATP, implicating its possible role in cellular energy sensing. In the present study, biochemical assays of cell surface expression suggest that this gain of function reflects, in part, an increase in channel number due to the reduction in ClC-2 internalization by endocytosis. Cell surface expression of the disease-causing mutant: G715E, thought to lack wild-type nucleotide binding affinity, is similarly affected, suggesting that ATP-depletion modifies the function of proteins in the endocytic pathway rather than ClC-2 directly. Using a combination of immunofluorescence and biochemical studies, we confirmed that ClC-2 is internalized via dynamin-dependent endocytosis and that the change in surface expression evoked by ATP depletion is partially mimicked by inhibition of dynamin function using a dynamin dominant-negative mutant (DynK44A). Furthermore, trafficking via the early endosomal compartment occurs in part through rab5-associated vesicles and recycling of ClC-2 to the cell surface occurs through a rab11 dependent pathway. In summary, we have determined that the internalization of ClC-2 by endocytosis is inhibited by metabolic stress, highlighting the importance for understanding the molecular mechanisms mediating the endosomal trafficking of this channel.  相似文献   

10.
Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.  相似文献   

11.
A role for EHD4 in the regulation of early endosomal transport   总被引:1,自引:0,他引:1  
All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway.  相似文献   

12.
13.
In animals, sorting of membrane proteins following their internalization from the plasma membrane (PM) by endocytosis occurs through a series of different endosomal compartments. In plants, how and where these sorting events take place is still poorly understood and our current view of the endocytic pathway still largely relies on analogies made from the animal system. However, extensive differences seem to exist between animal and plant endosomal functions, as exemplified by the role of the trans-Golgi network (TGN) as an early endosomal compartment in plants or the functional diversification of conserved sorting complexes. By using the Arabidopsis root tip as a reference model, we and other have begun to shed light on the complexity of the plant endocytic pathways. Notably, we have recently characterized the functions of an endosomal compartment, the SNX1-endosomes, also referred to as the prevacuolar compartment (PVC) or multivesicular bodies (MVB), in the sorting of different cargo proteins, including two related auxin-efflux carriers, PIN1 and PIN2. We have shown that routing decisions take place at this endosomal level, such as the sorting of PIN2 toward the lytic vacuole for degradation or PIN1 toward the PM for recycling.Key Words: Arabidopsis, intracellular trafficking, endocytic recycling, endosomes, MVB, PVC, VPS29, SNX, PIN, cell polarity  相似文献   

14.
The multispanning membrane protein Ste6, a member of the ABC-transporter family, is transported to the yeast vacuole for degradation. To identify functions involved in the intracellular trafficking of polytopic membrane proteins, we looked for functions that block Ste6 transport to the vacuole upon overproduction. In our screen, we identified several known vacuolar protein sorting (VPS) genes (SNF7/VPS32, VPS4, and VPS35) and a previously uncharacterized open reading frame, which we named MOS10 (more of Ste6). Sequence analysis showed that Mos10 is a member of a small family of coiled-coil-forming proteins, which includes Snf7 and Vps20. Deletion mutants of all three genes stabilize Ste6 and show a "class E vps phenotype." Maturation of the vacuolar hydrolase carboxypeptidase Y was affected in the mutants and the endocytic tracer FM4-64 and Ste6 accumulated in a dot or ring-like structure next to the vacuole. Differential centrifugation experiments demonstrated that about half of the hydrophilic proteins Mos10 and Vps20 was membrane associated. The intracellular distribution was further analyzed for Mos10. On sucrose gradients, membrane-associated Mos10 cofractionated with the endosomal t-SNARE Pep12, pointing to an endosomal localization of Mos10. The growth phenotypes of the mutants suggest that the "Snf7-family" members are involved in a cargo-specific event.  相似文献   

15.
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport–mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised.  相似文献   

16.
Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level.  相似文献   

17.
Endocytosis of cell surface receptors plays an important role in regulating cell signaling cascades. In some cases, internalization of an activated receptor attenuates the signaling process, while in other cases the clustering of activated receptors on early endosomal structures has been proposed to be essential for fully activating signaling cascades. Regulating the movement of receptors and other signaling proteins through the endocytic pathway, therefore, has a direct impact on cellular homeostasis. The small GTPase Rab5 is a crucial regulatory component of the endocytic pathway. Activation of Rab5 is mediated by GDP-GTP exchange factors (GEFs) that generate the Rab5-GTP complex. A large number of proteins have been identified that contain a specific, highly conserved domain (Vps9) that catalyzes nucleotide exchange on Rab5, linking the regulation of cell signaling cascades with intracellular receptor trafficking through the endocytic pathway.  相似文献   

18.
The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.  相似文献   

19.
Endosomal trafficking plays an integral role in various eukaryotic cell activities and serves as a basis for higher-order functions in multicellular organisms. An understanding of the importance of endosomal trafficking in plants is rapidly developing, but its molecular mechanism is mostly unknown. Several key regulators of endosomal trafficking, including RAB5, which regulates diverse endocytic events in animal cells, are highly conserved. However, the identification of lineage-specific regulators in eukaryotes indicates that endosomal trafficking is diversified according to distinct body plans and lifestyles. In addition to orthologues of metazoan RAB5, land plants possess a unique RAB5 molecule, which is one of the most prominent features of plant RAB GTPase organization. Plants have also evolved a unique repertoire of SNAREs, the most distinctive of which are diverse VAMP7-related longins, including plant-unique VAMP72 derivatives. Here, we demonstrate that a plant-unique RAB5 protein, ARA6, acts in an endosomal trafficking pathway in Arabidopsis thaliana. ARA6 modulates the assembly of a distinct SNARE complex from conventional RAB5, and has a functional role in the salinity stress response. Our results indicate that plants possess a unique endosomal trafficking network and provide the first indication of a functional link between a specific RAB and a specific SNARE complex in plants.  相似文献   

20.
The role of phospholipids in the regulation of membrane trafficking and signaling is largely unknown. Phosphatidylcholine (PC) is a main component of the plasma membrane. Mutants in the Drosophila phosphocholine cytidylyltransferase 1 (CCT1), the rate-limiting enzyme in PC biosynthesis, show an altered phospholipid composition with reduced PC and increased phosphatidylinositol (PI) levels. Phenotypic features of dCCT1 indicate that the enzyme is not required for cell survival, but serves a role in endocytic regulation. CCT1- cells show an increase in endocytosis and enlarged endosomal compartments, whereas lysosomal delivery is unchanged. As a consequence, an increase in endocytic localization of EGF receptor (Egfr) and Notch is observed, and this correlates with a reduction in signaling strength and leads to patterning defects. A further link between PC/PI content, endocytosis, and signaling is supported by genetic interactions of dCCT1 with Egfr, Notch, and genes affecting endosomal traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号