首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opsanus beta expresses a full complement of ornithine–urea cycle (OUC) enzymes and is facultatively ureotelic, reducing ammonia-N excretion and maintaining urea-N excretion under conditions of crowding/confinement. The switch to ureotelism is keyed by a modest rise in cortisol associated with a substantial increase in cytosolic glutamine synthetase for trapping of ammonia-N and an upregulation of the capacity of the mitochondrial OUC to use glutamine-N. The entire day's urea-N production is excreted in 1 or 2 short-lasting pulses, which occur exclusively through the gills. The pulse event is not triggered by an internal urea-N threshold, is not due to pulsatile urea-N production, but reflects pulsatile activation of a specific branchial excretion mechanism that rapidly clears urea-N from the body fluids. A bidirectional facilitated diffusion transporter, with pharmacological similarity to the UT-A type transporters of the mammalian kidney, is activated in the gills, associated with an increased trafficking of dense-cored vesicles in the pavement cells. An 1814 kB cDNA (‘tUT’) coding for a 475–amino acid protein with approximately 62% homology to mammalian UT-A's has been cloned and facilitates phloretin-sensitive urea transport when expressed in Xenopus oocytes. tUT occurs only in gill tissue, but tUT mRNA levels do not change over the pulse cycle, suggesting that tUT regulation occurs at a level beyond mRNA. Circulating cortisol levels consistently decline prior to a pulse event and rise thereafter. When cortisol is experimentally clamped at high levels, natural pulse events are suppressed in size but not in frequency, an effect mediated through glucocorticoid receptors. The cortisol decline appears to be permissive, rather than the actual trigger of the pulse event. Fluctuations in circulating AVT levels do not correlate with pulses; and injections of AVT (at supraphysiological levels) elicit only minute urea-N pulses. However, circulating 5-hydroxytryptamine (5-HT) levels fluctuate considerably and physiological doses of 5-HT cause large urea-N pulse events. When the efferent cranial nerves to the gills are sectioned, natural urea pulse events persist, suggesting that direct motor output from the CNS to the gill is not the proximate control.  相似文献   

2.
Previous work has shown that pulsatile urea excretion at the gills of the gulf toadfish is due to periodic activation of a facilitated diffusion transport system with molecular and pharmacological similarity to the UT-A transport system of the mammalian kidney. In mammals, AVP and glucocorticoids are two important endocrine regulators of this system. The present study focused on the potential role of circulating AVT (the teleost homologue of AVP) and cortisol levels as possible triggers for urea pulses. Long-term (34-84 h) monitoring of plasma levels by repetitive sampling at 2-h intervals from chronic cannulae in individual toadfish demonstrated that circulating AVT concentrations are low (10(-12)-10(-11) M), and show no relationship to the occurrence of natural urea pulses. In contrast, plasma cortisol levels decline greatly prior to natural pulses and rise rapidly thereafter. AVT injections into the caudal artery or ventral aorta elicited pulse events, but these were extremely small (1-10%) relative to natural pulses, and occurred only at unphysiological dose levels (10(-9) M in the plasma). AVP was a partial agonist, but isotocin, insulin-like growth factor-1, and atrial natriuretic peptide were without effect at the same concentration. Artificially raising plasma cortisol levels by cortisol injection tended to reduce responsiveness to AVT. Pharmacological reduction of plasma cortisol levels by metyrapone injection elicited small pulses similar to those caused by AVT. Following such pulse events, AVT was ineffective in inducing pulses. We conclude that decreases in circulating cortisol play an important permissive role in urea pulsing, but that circulating AVT levels are not involved.  相似文献   

3.
Nitrogen excretion by the gulf toadfish (Opsanus beta) is of interest because of its high proportion of urea excretion compared with that of other teleosts. To better understand the factors influencing the timing of nitrogen excretion, the ratio of excreted urea∶ammonia, and the effector molecules regulating these processes, gulf toadfish were subjected to a series of experiments that moved them progressively from internal laboratory to outdoor mesocosm settings while assessing their behavior, nitrogen excretion patterns, levels of plasma hormones/effectors, and other parameters. In confined flux chambers in both laboratory and outdoor settings, toadfish nitrogen excretion was largely observed as urea pulses, with no apparent diel patterns to the pulses. Unrestrained toadfish in mesocosms exhibited distinctly nocturnal behavior, remaining exclusively in shelters during the day but taking several forays out into the mesocosm at night. In contrast to nitrogen excretion patterns in chambers, urea and ammonia were coexcreted in mesocosms and ratios for urea∶ammonia were very close to 1∶1 for both fed and fasted toadfish. The majority of measured excretion (and corresponding declines in plasma urea levels) occurred during two distinct periods of pulsing during daylight hours (0600-1000 and 1600-1800 hours). The declines in plasma urea associated with excretion were preceded by/coincided with declines in plasma cortisol. No day/night or hourly patterns in plasma serotonin (5-hydroxytryptamine [5-HT]) were observed, but there was a strong positive correlation among all samples between plasma urea and 5-HT. There was also a negative correlation between plasma cortisol and 5-HT. As expected for a nocturnally active species, plasma melatonin was significantly lower in daylight hours. A variety of enzyme activities (glutamine synthetase, glutaminase) and mRNA levels (glutamine synthetase, urea transporter, and Rhesus proteins) showed no significant variation over a diel cycle. Unlike prior laboratory studies, our results show that gulf toadfish in a natural setting have a distinctly diurnal pattern of nitrogen excretion and that ammonia and urea are coexcreted. The decline in plasma cortisol associated with urea pulses noted in prior laboratory studies was not as evident in the natural setting.  相似文献   

4.
Previous work has shown that pulsatile urea excretion at the gills of the gulf toadfish is due to periodic activation of a facilitated diffusion transport system with molecular and pharmacological similarity to the UT-A transport system of the mammalian kidney. In mammals, AVP and glucocorticoids are two important endocrine regulators of this system. The present study focused on the potential role of circulating AVT (the teleost homologue of AVP) and cortisol levels as possible triggers for urea pulses. Long-term (34–84 h) monitoring of plasma levels by repetitive sampling at 2-h intervals from chronic cannulae in individual toadfish demonstrated that circulating AVT concentrations are low (10−12–10−11 M), and show no relationship to the occurrence of natural urea pulses. In contrast, plasma cortisol levels decline greatly prior to natural pulses and rise rapidly thereafter. AVT injections into the caudal artery or ventral aorta elicited pulse events, but these were extremely small (1–10%) relative to natural pulses, and occurred only at unphysiological dose levels (10−9 M in the plasma). AVP was a partial agonist, but isotocin, insulin-like growth factor-1, and atrial natriuretic peptide were without effect at the same concentration. Artificially raising plasma cortisol levels by cortisol injection tended to reduce responsiveness to AVT. Pharmacological reduction of plasma cortisol levels by metyrapone injection elicited small pulses similar to those caused by AVT. Following such pulse events, AVT was ineffective in inducing pulses. We conclude that decreases in circulating cortisol play an important permissive role in urea pulsing, but that circulating AVT levels are not involved.  相似文献   

5.
The neurochemical, serotonin (5-hydroxytryptamine; 5-HT) is involved in the regulation of toadfish pulsatile urea excretion as well as the teleost hypoxia response. Thus, the goal of this study was to determine whether environmental conditions that activate branchial chemoreceptors also trigger pulsatile urea excretion in toadfish, since environmental dissolved oxygen levels in a typical toadfish habitat show significant diel fluctuations, often reaching hypoxic conditions at dawn. Toadfish were fitted with arterial, venous and/or buccal catheters and were exposed to various environmental conditions, and/or injected with the O(2) chemoreceptor agonist NaCN or the 5-HT(2) receptor agonist alpha-methyl-5HT. Arterial PO(2), as well as ammonia and urea excretion were monitored. Natural fluctuations in arterial PO(2) levels in toadfish did not correlate with the occurrence of a urea pulse. Chronic exposure (24 h) of toadfish to hyperoxia was without effect on nitrogen excretion, however, exposure to hypoxia caused a significant reduction in the frequency of urea pulses, and exposure to hypercapnia resulted in a reduction in the percentage of nitrogen waste excreted as urea. Of toadfish exposed acutely to hypoxia, 20% pulsed within 1 h, whereas none pulsed after normoxic or hypercapnic treatments. Furthermore, 20% of fish injected intravenously with NaCN pulsed within 1 h of injection, but no fish pulsed after injection of NaCN into the buccal cavity. To test whether environmental conditions affected 5-HT(2) receptors, toadfish were injected with alpha-methyl-5HT, which elicits urea pulses in toadfish. No significant differences in pulse size occurred among the various environmental treatments. Our findings suggest that neither the environmental conditions of hypoxia, hyperoxia or hypercapnia, nor direct branchial chemoreceptor activation by NaCN play a major role in the regulation of pulsatile urea excretion in toadfish.  相似文献   

6.
The role of serotonin (5-HT)1B receptors in the mechanism of action of selective serotonin re-uptake inhibitors (SSRI) was studied by using intracerebral in vivo microdialysis in conscious, freely moving wild-type and 5-HT1B receptor knockout (KO 5-HT1B) mice in order to compare the effects of chronic administration of paroxetine via osmotic minipumps (1 mg per kg per day for 14 days) on extracellular 5-HT levels ([5-HT]ext) in the medial prefrontal cortex and ventral hippocampus. Basal [5-HT]ext values in the medial prefrontal cortex and ventral hippocampus, approximately 20 h after removing the minipump, were not altered by chronic paroxetine treatment in both genotypes. On day 15, in the ventral hippocampus, an acute paroxetine challenge (1 mg/kg i.p.) induced a larger increase in [5-HT]ext in saline-pretreated mutant than in wild-type mice. This difference between the two genotypes in the effect of the paroxetine challenge persisted following chronic paroxetine treatment. Conversely, in the medial prefrontal cortex, the paroxetine challenge increased [5-HT]ext similarly in saline-pretreated mice of both genotypes. Such a challenge produced a further increase in cortical [5-HT]ext compared with that in saline-pretreated groups of both genotypes, but no differences were found between genotypes following chronic treatment. To avoid the interaction with raphe 5-HT1A autoreceptors, 1 micro m paroxetine was perfused locally through the dialysis probe implanted in the ventral hippocampus; similar increases in hippocampal [5-HT]ext were found in acutely or chronically treated wild-type mice. Systemic administration of the mixed 5-HT1B/1D receptor antagonist GR 127935 (4 mg/kg) in chronically treated wild-type mice potentiated the effect of a paroxetine challenge dose on [5-HT]ext in the ventral hippocampus, whereas systemic administration of the selective 5-HT1A receptor antagonist WAY 100635 did not. By using the zero net flux method of quantitative microdialysis in the medial prefrontal cortex and ventral hippocampus of wild-type and KO 5-HT1B mice, we found that basal [5-HT]ext and the extraction fraction of 5-HT were similar in the medial prefrontal cortex and ventral hippocampus of both genotypes, suggesting that no compensatory response to the constitutive deletion of the 5-HT1B receptor involving changes in 5-HT uptake capacity occurred in vivo. As steady-state brain concentrations of paroxetine at day 14 were similar in both genotypes, it is unlikely that differences in the effects of a paroxetine challenge on hippocampal [5-HT]ext are due to alterations of the drug's pharmacokinetic properties in mutants. These data suggest that there are differences between the ventral hippocampus and medial prefrontal cortex in activation of terminal 5-HT1B autoreceptors and their role in regulating dialysate 5-HT levels. These presynaptic receptors retain their capacity to limit 5-HT release mainly in the ventral hippocampus following chronic paroxetine treatment in mice.  相似文献   

7.
Abstract: The characteristics of the serotonin (5-HT) output in the dorsal and median raphe nuclei of the rat were studied using in vivo microdialysis. The basal output of 5-HT increased after KC1 was added to the perfusion fluid. In contrast, neither the omission of calcium ions nor the addition of 0.5 nM tetrodotoxin affected dialysate 5-HT or 5-hy-droxyindoleacetic acid (5-H1AA). Reserpine did not decrease the output of 5-HT and 5-HIAA 24 h later and p-chloroamphetamine increased 5-HT in both vehicle- and reserpine-treated rats severalfold. 8-Hydroxy-2-(di-n-pro-pylamino)tetralin (8-OH-DPAT), at 1 or 10 μM, perfused into the raphe did not change the outputs of 5-HT or 5-HIAA. Higher doses (0.1, Land 10 mM) increased extracellular 5-HT in the raphe, probably via an inhibition of uptake. In animals bearing two probes (raphe nuclei and ventral hippocampus), only the 10 vaM dose of 8-OH-DPAT perfused into the raphe decreased the hippocampal output of 5-HT and 5-HIAA. The systemic injection of 0.1 mg/kg 8-OH-DPAT decreased dialysate 5-HT and 5-HIAA in the raphe and hippocampus. These results suggest that extracellular 5-HT in raphe nuclei originates from a cytoplasmic pool and is not dependent on either nerve impulse of 5-HT neurons or local activation of 5-HT1A receptors.  相似文献   

8.
A method for measuring oxygen consumption in isolated perfused gills   总被引:1,自引:0,他引:1  
A method is described for measuring respiration in isolated perfused flounder gills experiencing pressures and flows similar to those seen in vivo . Mean oxygen consumption of 13 preparations bathed and perfused in identical saline was 5·00 ± 0·75 (s.e.) μ mol h−1 g wet−1, whilst that of five preparations perfused with saline but bathed in sea water (32 mg l−1) was 12·06±2·39 (s.e.) μmol h−1 g wet−1. The oxygen consumption of the seawater bathed gills was significantly higher (P<0·05) than that in saline bathed gills. These results provide direct evidence both of the high metabolic activity of the gill under normal perfusion conditions and of the increased energy expenditure of the giil in hyperosmotic, compared to isosmotic, environments.  相似文献   

9.
Central serotonin2C receptors (5-HT(2C)Rs) control the mesoaccumbens dopamine (DA) pathway. This control involves the constitutive activity (CA) of 5-HT(2C)Rs, and is thought to engage regionally distinct populations of 5-HT(2C)Rs, leading to opposite functional effects. Here, using in vivo microdialysis in halothane-anesthetized rats, we investigated the relative contribution of ventral tegmental area (VTA) and nucleus accumbens shell (NAc) 5-HT(2C)Rs in the phasic/tonic control of accumbal DA release, to specifically identify the nature (inhibition/excitation) of the control, and the role of the 5-HT(2C)R CA. Intra-VTA injections of the selective 5-HT(2C)R antagonists SB 242084 and/or SB 243213 (0.1-0.5 microg/0.2 microL) prevented the decrease in accumbal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p), but did not affect the increase in DA outflow induced by the 5-HT(2C)R inverse agonist SB 206553 (5 mg/kg, i.p). Intra-NAc infusions of SB 242084 (0.1-1 microM) blocked Ro 60-0175- and SB 206553-induced changes of DA outflow. Intra-NAc, but not intra-VTA administration of SB 206553 increased basal DA outflow. These findings demonstrate that both VTA and NAc 5-HT(2C)Rs participate in the inhibitory control exerted by 5-HT(2C)Rs on accumbal DA release, and that the NAc shell may represent a primary action site for the CA of 5-HT(2C)Rs.  相似文献   

10.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 1B receptor subtype in mediating the effects of selective serotonin re-uptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg, but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiated the effect of a single administration of paroxetine on extracellular 5-HT levels more in the ventral hippocampus than in the frontal cortex. These data suggest that 5-HT1B autoreceptors limit the effects of SSRIs on dialysate 5-HT levels at serotonergic nerve terminals.  相似文献   

11.
This study evaluated the hypothesis that the pulsatile excretion of urea by toadfish could serve as a social signal. In the first experiment, physiological parameters were measured in pairs of dominant and subordinate toadfish. Subordinate toadfish had elevated concentrations of circulating plasma cortisol, an effect maintained even after cannulation. In the second experiment, one fish of a pair was injected with 14C-urea, and the occurrence of urea pulses during social encounters was documented. Social status did not influence the order of pulsing, that is, whether a dominant or subordinate fish pulsed first during a social encounter. However, in seven out of eight pairs, both toadfish pulsed within 2 h of each other, indicating some form of communication between fish. In the third and final experiment, the response of toadfish to urea (natural or synthetic) was observed. There was a tendency for toadfish to avoid synthetic urea but there was no apparent behavioural response to water containing toadfish urea. Pulsing events do not appear to play an integral role during social encounters as previously hypothesised, but the close timing of pulses in toadfish pairs suggests some transfer of information.  相似文献   

12.
Summary Chloride extrusion is examined in the isolated perfused gill of the pinfish,Lagodon rhomboides. In both sea water and Ringer's baths, the Cl efflux from the isolated gill is 45% that of the intact animal. The transepithelial electrical potential (TEP) across the isolated gill in sea water is equal to that in vivo, in Ringer's the gill TEP is slightly less than in vivo. Cl efflux is linearly dependent upon afferent flow of the perfusate. Furosemide, added to the perfusate inhibits 57% of the Cl efflux in gills bathed bilaterally by Ringer's. Ouabain causes a marked vasoconstriction and increase in afferent pressure. Removal of Na from the perfusate produces an inhibition of the Cl efflux that is not potential mediated. Net extrusion of Cl is inhibited in isolated gills bathed bilaterally by sodium free Ringer's.  相似文献   

13.
—Acute injections of LSD (2 × 500 μg/kg) to rats resulted in evidence of a reduced 5-hydroxytryptamine (5-HT) turnover in all brain areas studied. In contrast, a much smaller dose of LSD (20 μg/kg) repeated daily for 1 month produced a significantly reduced turnover only in the midbrain area. The pons/medulla and forebrain areas showed small and not statistically significant increases in 5-HT turnover.  相似文献   

14.
The present study was designed to investigate whether lungs can utilize 5-hydroxytryptophan (5-HTP), formed elsewhere and transported, for the synthesis of 5-hydroxytryptamine (5-HT). [14C]5-HTP uptake was 7.7 +/- 1.1 and 3.9 +/- 0.2% by rabbit and rat lungs, respectively, after 1 h of perfusion with 10 microM [14C]5-HTP. There was an increase in the lung uptake of [14C]5-HTP when the lungs were preperfused with 0.5 mM chlorphentermine (CP) and the uptake was low when the lungs were preperfused with 0.1 mM hydroxybenzylhydrazine dihydrochloride (HBH). The perfusate concentration of 5-hydroxyindole acetic acid (5-HIAA) increased significantly (3-4 micrograms/100 mL) during rabbit lung perfusion with 10 microM [14C]5-HTP and this did not change significantly when the lungs were preperfused with 0.5 mM CP. However, 5-HT increased with time in the perfusate. 5-HT, but not 5-HIAA, was detected in the perfusate and increased with time of perfusion when the rat lungs were perfused either with 10 microM 5-HTP or with 0.5 mM CP and 10 microM 5-HTP. However, no metabolites were detected in either the rabbit lung or rat lung perfusates when they were preperfused with 0.1 mM HBH. Lung contents of 5-HT and 5-HIAA were significantly higher in the rat lungs and only 5-HIAA increased in rabbit lungs after 1 h of perfusion with 10 microM 5-HTP. Preperfusion with 0.5 mM CP resulted in a greater increase in the 5-HT content of both rabbit and rat lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

16.
Based on early pharmacological work, the serotonin 2A (5-HT(2A)) receptor subtype is believed to be involved in the regulation of toadfish pulsatile urea excretion. The goal of the following study was to characterize the toadfish 5-HT(2A) receptor at a molecular level, to determine the tissues in which this receptor is predominantly expressed and to further investigate the pharmacological specificity of toadfish pulsatile urea excretion by examining the effect of ketanserin, a 5-HT(2A) receptor antagonist, on resting rates of pulsatile urea excretion. The full-length toadfish 5-HT(2A) receptor encodes a 496 amino acid sequence and shares 57-80% sequence identity to 5-HT(2A) receptors of other organisms, with 100% conservation among important ligand-binding residues. Toadfish 5-HT(2A) receptor mRNA expression was highest in the swim bladder and gonad, followed by the whole brain. All other tissues tested (esophagus, stomach, anterior intestine, posterior intestine, rectum, liver, kidney, heart, muscle and gill) had mRNA expression levels that were significantly less than whole brain. Toadfish 5-HT(2A) receptor mRNA expression within the brain was highest in the hindbrain, telencephalon and midbrain/diencephalon regions. Treatment with the 5-HT(2A) receptor antagonist, ketanserin, resulted in a significant decrease in the pulsatile component of spontaneous urea excretion due to a reduction in urea pulse size with no significant change in pulse frequency. These results lend further support for the 5-HT(2A) receptor in the regulation of pulsatile urea excretion in toadfish.  相似文献   

17.
This study aims to illustrate potential transport mechanisms behind the divergent approaches to nitrogen excretion seen in the ureotelic toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Specifically, we wish to confirm the expression of a urea transporter (UT), which is found in the gill of the toadfish and which is responsible for the unique “pulsing” nature of urea excretion and to localize the transporter within specific gill cells and at specific cellular locations. Additionally, the localization of ammonia transporters (Rhesus glycoproteins; Rhs) within the gill of both the toadfish and midshipman was explored. Toadfish UT (tUT) was found within Na+-K+-ATPase (NKA)-enriched cells, i.e., ionocytes (probably mitochondria-rich cells), especially along the basolateral membrane and potentially on the apical membrane. In contrast, midshipman UT (pnUT) immunoreactivity did not colocalize with NKA immunoreactivity and was not found along the filaments but instead within the lamellae. The cellular location of Rh proteins was also dissimilar between the two fish species. In toadfish gills, the Rh isoform Rhcg1 was expressed in both NKA-reactive cells and non-reactive cells, whereas Rhbg and Rhcg2 were only expressed in the latter. In contrast, Rhbg, Rhcg1 and Rhcg2 were expressed in both NKA-reactive and non-reactive cells of midshipman gills. In an additional transport epithelium, namely the intestine, the expression of both UTs and Rhs was similar between the two species, with only subtle differences being observed.  相似文献   

18.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

19.
We studied the effects of bronchoconstrictor stimuli administered selectively through isolated-perfused preparations of the bronchial and pulmonary circulations of 80 Sprague-Dawley rats. Dose-related contraction was elicited with infusion of acetylcholine (ACh), histamine, and serotonin (5-HT). Bolus infusion of 10(-5) mol ACh caused a 3.5-fold increase in pulmonary resistance (RL) after infusion into the pulmonary circulation (PC) and a 2.5-fold increase in the bronchial circulation (BC) (P less than 0.05 vs. control) that was blocked selectively in each circulation with atropine. Administration of 10(-5) mol 5-HT into the BC caused only a 45% increase in RL; the same dose of 5-HT caused a 5.1-fold increase in RL in the PC. A biphasic (increase at lower doses/decrease at higher doses) change in RL was elicited by histamine that was converted to dose-related constriction after H2-receptor blockade with cimetidine in both BC and PC. Response to exogenous ACh remained viable for greater than 5 h. Infusion of the mast cell degranulating agent, compound 48/80 (48/80), caused increase in RL that corresponded to quantitative recovery of histamine in the perfusates of both BC and PC. Histamine concentration in the perfusate increased from 47.2 +/- 31.8 (base line) to 624 +/- 60.1 ng/ml (2-fold increase in RL) in the BC and from 38.3 +/- 17.7 (base line) to 294.4 +/- 38.1 ng/ml (50% increase in RL) in the PC (P less than 0.001 vs. baseline concentration) after a 0.1-mg/ml dose of 48/80.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of sodium valproate (VPA; 100, 200, and 400 mg/kg, i.p.) on ventral hippocampal and anterior caudate putamen extracellular levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were examined using in vivo microdialysis. VPA induced dose-related increases in dialysate DA, 3,4-dihydroxyphenylacetic acid, and 5-HT in the ventral hippocampus. Anterior caudate putamen dialysate 5-HT was also dose dependently elevated by the drug, whereas DA levels tended to decrease with increasing VPA dose. In contrast, VPA (200, 400, and 800 mg/kg, i.p.) produced no significant elevation of DA in posterior caudate putamen dialysates, although 5-HT levels were significantly elevated at the 400- and 800-mg/kg doses. In all three regions studied, dialysate concentrations of 5-hydroxyindoleacetic acid and homovanillic acid remained at basal levels following VPA treatments. The results are discussed with regard to the possible anticonvulsant mode of action of VPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号