首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hepatocyte growth factor (HGF) increases human trophoblast motility and invasion, an effect which is abrogated when inducible nitric oxide synthase (iNOS) is inhibited. In this study we have investigated the pathways involved in the regulation of trophoblast motility. Both basal and HGF-stimulated motility of the extravillous trophoblast cell line, SGHPL-4, were inhibited in a dose-dependent manner by the phosphatidylinositol-3-kinase (PI3-kinase) inhibitor, LY294002. HGF-stimulated iNOS expression was also inhibited by LY294002 and direct activation of PI3-kinase, using the peptide 740Y-P, led to an increase in iNOS expression and cell motility. Pretreatment with rapamycin, which acts at a point distal to PI3-kinase activation, also inhibited basal and HGF-stimulated motility. Inhibition of the p42/p44 mitogen activated protein kinase (MAPK) pathway but not the p38 MAPK pathway had significant inhibitory effects on HGF-stimulated but not basal trophoblast motility. Inhibition of p42/p44 MAPK also inhibited HGF-induced iNOS expression. This data demonstrate that the PI3-kinase signaling pathway is involved in basal trophoblast motility and that both MAPK and PI3-kinase signaling pathways are important in HGF-stimulated motility and iNOS expression.  相似文献   

2.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

3.
AimsThe present study aimed to investigate the correlation between quercetin (Que) and the p38 mitogen-activated protein kinase (p38MAPK)/inducible nitric oxide synthase (iNOS) signaling pathway and to explore its regulating effect on secondary oxidative stress following acute spinal cord injury (SCI), so as to elucidate the protective effects and mechanism associated with Que treatment during acute SCI.Main methodsSprague–Dawley rats were randomly divided into sham-surgery, SCI, Que, methylprednisolone (MP), and specific p38MAPK inhibitor SB203580 treatment groups. Acute SCI models were established in rats by a modified Allen's method. Real-time PCR analysis, western blot assay and immunohistochemistry for molecular changes in the p38MAPK/iNOS signaling pathway, determination of malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, reflecting the levels of secondary oxidative stress, and functional or behavioral data, reflecting changes induced by Que and control treatments post-SCI were performed.Key findingsQue significantly increased Basso, Beattie and Bresnahan scores and inclined plane test scores in SCI rats similar to the positive control drug, MP. Que significantly inhibited increases in phosphorylated-p38MAPK (p-p38MAPK) and iNOS expression and reduced the rate of iNOS-positive cells in rats with SCI, similar to the effects of SB203580. In addition, both Que and SB203580 reduced MDA content and enhanced SOD activity in SCI rats, with Que effects being stronger.SignificanceThese experimental findings indicate that in SCI rats, Que has protective effects on the spinal cord by the potential mechanism of inhibiting the activation of p38MAPK/iNOS signaling pathway and thus regulating secondary oxidative stress.  相似文献   

4.
Nox 2 stimulates muscle differentiation via NF-kappaB/iNOS pathway   总被引:1,自引:0,他引:1  
The NF-kappaB/iNOS pathway stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway and diverse antioxidants block muscle differentiation. Therefore, we here investigated whether Nox 2 links those two myogenic pathways in H9c2 and C2C12 myoblasts. Compared with the proliferation stage, ROS generation was enhanced from the early stage of differentiation and gradually increased as differentiation progressed. Antioxidants suppressed the activated NF-kappaB/iNOS pathway during muscle differentiation. Nox 2 activity was also increased during muscle differentiation. Treatment with DPI and apocynin, two inhibitors of NADPH oxidase, and suppression of Nox 2 expression using siRNA, but not Nox 1, inhibited NADPH oxidase activity, muscle differentiation, and the NF-kappaB/iNOS pathway. Inhibition of PI 3-kinase and p38 MAPK suppressed the Nox 2/NF-kappaB/iNOS pathway. Nitric oxide restored muscle differentiation blocked by treatment with antioxidants or suppression of the Nox 2/NF-kappaB/iNOS pathway. In conclusion, Nox 2 stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway by activating the NF-kappaB/iNOS pathway via ROS generation.  相似文献   

5.
Senile plaque accumulation and neurofibrillary tangles are primary characteristics of Alzheimer’s disease. We aimed to assess the protective functions of naringenin against β-amyloid protein fragment 25-35 (Aβ25-35)-caused nerve damage in differentiated PC12 cells, and study the potential mechanisms. We evaluated cell viability and apoptosis using the 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test and flow cytometry, respectively. Moreover, we measured protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and caspase-3 activity via western blotting and RT-PCR. We found that naringenin protected cell against Aβ25-35-caused nerve damage by increasing cell viability, promoting Akt and GSK3β activation, and inhibiting cell apoptosis and caspase-3 activity. However, treatment with the estrogen receptor (ER) antagonist ICI182, 780 or phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 suppressed the effects of naringenin. Our results suggested that naringenin could effectively suppress Aβ25-35-caused nerve damage in PC12 cells by regulating the ER and PI3K/Akt pathways.  相似文献   

6.
This study investigates the role of p38 MAPK, inducible nitric oxide synthase (iNOS), and the intrinsic pathway signaling in male germ cell death in rats after hormonal deprivation by a potent GnRH antagonist treatment. Germ cell apoptosis, involving exclusively middle (VII-VIII) stages, was activated by d 5 after GnRH antagonist treatment. Initiation of germ cell apoptosis was preceded by p38 MAPK activation and induction of iNOS. p38 MAPK activation and iNOS induction were further accompanied by a marked perturbation of the BAX/BCL-2 rheostat, cytochrome c, and DIABLO release from mitochondria, caspase activation, and poly(ADP-ribose) polymerase cleavage. Concomitant administration of aminoguanidine, a selective iNOS inhibitor, significantly prevented hormone deprivation-induced germ cell apoptosis. Inhibitors of iNOS or p38 MAPK were also effective in preventing human male germ cell apoptosis induced by hormone-free culture conditions. Together, these results establish a new signal transduction pathway involving p38 MAPK and iNOS that, through activation of the intrinsic pathway signaling, promotes male germ cell death in response to a lack of hormonal stimulation across species.  相似文献   

7.
8.
Triggering of the macrophage cell line RAW 264.7 with LPS promotes a transient activation of phosphatidylinositol 3-kinase (PI3-kinase). Incubation of activated macrophages with wortmannin and LY294002, two inhibitors of PI3-kinase, increased the amount of inducible nitric oxide synthase (iNOS) and the synthesis of nitric oxide. Treatment with wortmannin promoted a prolonged activation of NF-kappaB in LPS-treated cells as well as an increase in the promoter activity of the iNOS gene as deduced from transfection experiments using a 1.7-kb fragment of the 5' flanking region of the iNOS gene. Cotransfection of cells with a catalytically active p110 subunit of PI3-kinase impaired the responsiveness of the iNOS promoter to LPS stimulation, whereas transfection with a kinase-deficient mutant of p110 maintained the up-regulation in response to wortmannin. These results indicate that PI3-kinase plays a negative role in the process of macrophage activation and suggest that this enzyme might participate in the mechanism of action of antiinflammatory cytokines.  相似文献   

9.
We have reported recently that intrathecal (i.t.) injection of interleukin-1beta (IL-1beta), at a dose of 100 ng, induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in the spinal cord and results in thermal hyperalgesia in rats. This study further examines the role of mitogen-activated protein kinase (MAPK) in i.t. IL-1beta-mediated iNOS-NO cascade in spinal nociceptive signal transduction. All rats were implanted with an i.t. catheter either with or without an additional microdialysis probe. Paw withdrawal latency to radiant heat is used to assess thermal hyperalgesia. The iNOS and MAPK protein expression in the spinal cord dorsal horn were examined by western blot. The [NO] in CSF dialysates were also measured. Intrathecal IL-1beta leads to a time-dependent up-regulation of phosphorylated p38 (p-p38) MAPK protein expression in the spinal cord 30-240 min following IL-1beta injection (i.t.). However, neither the phosphorylated extracellular signal-regulated kinase (p-ERK) nor phosphorylated c-Jun NH2-terminal kinase (p-JNK) was affected. The total amount of p38, ERK, and JNK MAPK proteins were not affected following IL-1beta injection. Intrathecal administration of either selective p38 MAPK, or JNK, or ERK inhibitor alone did not affect the thermal nociceptive threshold or iNOS protein expression in the spinal cord. However, pretreatment with a p38 MAPK inhibitor significantly reduced the IL-1beta-induced p-p38 MAPK expression by 38-49%, and nearly completely blocked the subsequent iNOS expression (reduction by 86.6%), NO production, and thermal hyperalgesia. In contrast, both ERK and JNK inhibitor pretreatments only partially (approximately 50%) inhibited the IL-1beta-induced iNOS expression in the spinal cord. Our results suggest that p38 MAPK plays a pivotal role in i.t. IL-1beta-induced spinal sensitization and nociceptive signal transduction.  相似文献   

10.
Hong F  Kwon SJ  Jhun BS  Kim SS  Ha J  Kim SJ  Sohn NW  Kang C  Kang I 《Life sciences》2001,68(10):1095-1105
Oxidative stress plays a critical role in cardiac injuries during ischemia/reperfusion. Insulin-like growth factor-1 (IGF-1) promotes cell survival in a number of cell types, but the effect of IGF-1 on the oxidative stress has not been elucidated in cardiac muscle cells. Therefore, we examined the role of IGF-1 signaling pathway in cell survival against H2O2-induced apoptosis in H9c2 cardiac myoblasts. H2O2 treatment induced apoptosis in H9c2 cells, and pretreatment of cells with IGF-1 suppressed apoptotic cell death. The antiapoptotic effect of IGF-1 was blocked by LY294002 (an inhibitor of phosphatidylinositol 3-kinase) and by PD98059 (an inhibitor of extracellular signal-regulated kinase (ERK)). The protective effect of IGF-1 was also blocked by rapamycin (an inhibitor of p70 S6 kinase). Furthermore, H9c2 cells stably transfected with constitutively active PI 3-kinase (H9c2-p110*) and Akt (H9c2-Gag-Akt) constructs were more resistant to H2O2 cytotoxicity than control cells. Although H2O2 activates both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), IGF-1 inhibited only JNK activation. Activated PI 3-kinase (H9c2-p110*) and pretreatment of cells with IGF-1 down-regulated Bax protein levels compared to control cells. Taken together, our results suggest that IGF-1 transmits a survival signal against oxidative stress-induced apoptosis in H9c2 cells via PI 3-kinase and ERK-dependent pathways and the protective effect of IGF-1 is associated with the inhibition of JNK activation and Bax expression.  相似文献   

11.
Neurotrophin-induced neuroprotection against apoptosis was investigated using immature cultured cerebellar granule cells (CGC) from newborn rat pups. Apoptotic cell death induced by treatment with cytosine arabinoside (AraC) was confirmed by DNA fragmentation and quantified by cell survival assays. AraC was most effective in inducing apoptosis when added to CGC on the day of culture preparation, while less or no effect was observed when added at 24 or 48h after plating, respectively. Pretreatment of CGC cultures for 24h with brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4), but not neurotrophin-3 (NT-3), robustly protected against AraC neurotoxicity. K252a, an inhibitor of the tropomyosin-related kinase (Trk) tyrosine kinase receptor family which showed no toxicity by itself, blocked BDNF protection of AraC-induced apoptosis in a concentration-dependent manner. Neither protein kinase C activation nor inhibition mimicked or affected BDNF protection against AraC neurotoxicity. BDNF, but not NT-3, treatment of immature CGC caused a marked, but transient activation of Akt through phosphatidylinositol (PI) 3-kinase. The neuroprotective effects of BDNF were suppressed by pretreatment with LY 294002 (a PI 3-kinase inhibitor). BDNF neuroprotection was also preceded by activation of mitogen activated protein kinase (MAPK) and suppressed by two MAPK/ERK (MEK)-selective inhibitors, PD 98059 and U-0126. Moreover, inhibitors of PI 3-kinase and MEK potentiated AraC-induced neurotoxicity. These results show that neurotrophins protect against AraC-induced apoptosis, at least in part, through TrkB-mediated activation of the PI 3-kinase/Akt and MEK signaling pathways.  相似文献   

12.
PGE2 plays a critical role in colorectal carcinogenesis. We have previously shown that COX-2 expression and PGE2 synthesis are mediated by IGF-II/IGF-I receptor signaling in the Caco-2 cell line and that the pathway of phosphatidylinositol 3-kinase (PI3K)/Akt protects the cell from apoptosis. In the present study, we demonstrate that PGE2 has the ability to increase Ras and PI3K association and decrease the level of apoptosis in the same experimental system. The effect of PGE2 on PI3K/Ras association is dependent on the activation of EP4 receptor, the increase of cAMP levels, and the activation of PKA. In fact, treatment of cells with the PKA inhibitor H89 decreases the association of Ras and PI3K and Ras-associated PI3K activity. PKA inhibitor H89 is able to decrease threonine phosphorylation of Akt and to increase serine phosphorylation of Akt by p38 MAPK and counteracts the cytoprotective effect induced by PGE2. In addition, PGE2 is able to activate p38 MAPK and the inhibition of p38 MAPK, with SB203580 specific inhibitor or with dominant negative MKK6 kinase, is able to revert the apoptotic effect of H89 and serine phosphorylation of Akt. The effect of PGE2 on Caco-2 cell survival through PKA activation is mediated and regulated by the balance of threonine/serine phosphorylation of Akt by p38 kinase and PI3K. In conclusion, our data elucidate a novel mechanism for regulation of colon cancer cell survival and provide evidences for new combinatory treatments of colon cancer.  相似文献   

13.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.  相似文献   

14.
The aim of this study was to investigate the inhibitory effect of penehyclidine hydrochloride (PHC) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS) production in human endothelial cell. Cultured endothelial cells were pretreated with PHC, followed by LPS treatment. NO activity were determined. iNOS expression and p38 mitogen-activated protein kinase (p38 MAPK) protein expression were measured by Western blot analysis. LPS treatment significantly induced p38 MAPK activation, iNOS expression, and NO production, which could be attenuated by 2 μg/ml PHC pretreatment. Furthermore, our study showed LPS-induced NO production and iNOS expression were suppressed by p38 MAPK inhibitor SB203580 pretreatment. We concluded that PHC attenuates NO production and iNOS expression by suppressing the activation of p38 MAPK pathway, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced endothelial cell injury.  相似文献   

15.
Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein.  相似文献   

16.
Momordin Ic is a natural triterpenoid saponin enriched in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. So far, there is little scientific evidence for momordin Ic with regard to the anti-tumor activities. The aim of this work was to elucidate the anti-tumor effect of momordin Ic and the signal transduction pathways involved. We found that momordin Ic induced apoptosis in human hepatocellular carcinoma HepG2 cells, which were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, momordin Ic triggered reactive oxygen species (ROS) production together with collapse of mitochondrial membrane potential, cytochrome c release, down-regulation of Bcl-2 and up-regulation of Bax expression. The activation of p38 and JNK, inactivation of Erk1/2 and Akt were also demonstrated. Although ROS production rather than NO was stimulated, the expression of iNOS and HO-1 were altered after momordin Ic treatment for 4 h. Furthermore, the cytochrome c release, caspase-3 activation, Bax/Bcl-2 expression and PARP cleavage were promoted with LY294002 and U0126 intervention but were blocked by SB203580, SP600125, PI3K activator, NAC and 1,400 W pretreatment, demonstrating the mitochondrial disruption. Furthermore, momordin Ic combination with NAC influenced MAPK, PI3K/Akt and HO-1, iNOS pathways, MAPK and PI3K/Akt pathways also regulated the expression of HO-1 and iNOS. These results indicated that momordin Ic induced apoptosis through oxidative stress-regulated mitochondrial dysfunction involving the MAPK and PI3K-mediated iNOS and HO-1 pathways. Thus, momordin Ic might represent a potential source of anticancer candidate.  相似文献   

17.
The somatostatin analogue, TT-232 inhibits cell proliferation and induces apoptosis in a variety of tumor cells both in vivo and in vitro. While the early transient activation of Erk/MAPK was found to be important for the induction of cell cycle arrest, the signaling pathway leading to the activation of Erk/MAPK had not been fully established. Here we present evidence that activation of the Erk/MAPK pathway by TT-232 involves PI 3-kinase, PKCdelta and the protein tyrosine phosphatase alpha (PTPalpha). We show a physical interaction of PI 3-kinase and PKCdelta with PTPalpha and show that the tyrosine phosphatase plays a role in the activation of MAPK. In this process, PTPalpha Ser-180 and Ser-204 phosphorylation is critical for the induction of phosphatase activity, which is required for dephosphorylation of pp60(c-src). Taken together, we demonstrate the physical and functional association between PI 3-kinase, PKCdelta and PTPalpha in a signaling complex that mediates the antitumor activity of the somatostatin analogue TT-232.  相似文献   

18.
Both rotenone and manganese are possible neurotoxins for a wide variety of cell and neuronal types including dopaminergic neurons and induce apoptosis in various cells. Neurotrophic factors have the potential for therapeutic development when used to prevent Parkinson's disease. In this paper, we focused on the differences between rotenone and manganese as toxins, and characterized the influence of neurotrophic factors on toxin-induced apoptosis in PC12 cells. There were distinct differences in intracellular mechanisms between rotenone- and manganese-induced apoptosis such as the production of reactive oxygen species, the response to antioxidants, and the activation of the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Nerve growth factor (NGF) almost completely prevented rotenone-induced but not manganese-induced caspase activation and DNA fragmentation. The differential effect of NGF was found to be mainly due to the down-regulation of the Trk tyrosine kinase receptor by manganese but not by rotenone. Prevention of rotenone-induced apoptosis by NGF was attenuated by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, but not MAPK kinase (MEK) inhibitors, PD98059 or U0126. These results demonstrate that the potential neurotoxins for dopaminergic cells exert their toxic effect by activation of different signaling pathways of apoptosis and that NGF prevents rotenone-induced apoptosis through the activation of the PI 3-kinase pathway not MAPK pathway.  相似文献   

19.
Abstract : The induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines was studied in an oligodendrocyte progenitor cell line in relation to mitogen-activated protein kinase (MAPK) activation and cytokine-mediated cytotoxicity. When introduced individually to cultures of CG4 cells, the cytokines, i.e., tumor necrosis factor-α (TNFα), interleukin-1 (IL-1), and interferon-γ (IFNγ), had either minimal (TNFα) or no (IL-1 and IFNγ) detectable stimulatory effect on the production of nitric oxide. However, combinations of these factors, in particular, TNFα plus IFNγ, elicited a strong enhancement of nitric oxide synthesis and, as revealed by western blot and RT-PCR analysis, the expression of iNOS. TNFα and IL-1 were able to activate p38 MAPK in a time- and dose-dependent manner and together showed a combinatorial effect. In contrast, IFNγ neither activated on its own nor enhanced the activation of p38 MAPK in response to TNFα and IL-1. However, a specific inhibitor of p38 MAPK, i.e., SB203580, inhibited the induction of iNOS in cytokine combination-treated cells in a dose-dependent manner, thereby suggesting a role for the MAPK cascade in regulating the induction of iNOS gene expression in cytokine-treated cells. Blocking of nitric oxide production by an inhibitor of iNOS, i.e., nitro-L-arginine methyl ester, had a minimal protective effect against cytokine-mediated cytotoxicity that occurred before the elevation of nitric oxide levels, thereby indicating temporal and functional dissociation of nitric oxide production from cell killing.  相似文献   

20.
In addition to cholesterol-lowering effect, HMG-CoA reductase inhibition by statins has been shown to have protective effect in many cells type. The loss of vision in retinal degeneration disease associates with oxidative stress and apoptosis in retinal pigment epithelium (RPE) cell. This study was designed to examine the effect of statins on oxidant-induced damage in human RPE cells. Cultured human ARPE-19 (ARPE) cells were challenged with hydrogen peroxide (H(2) O(2) ) plus tumor necrosis factor alpha (TNFα) in the presence or absence of statins or various stress signaling inhibitors, including anti-oxidants N-acetyl cysteine (NAC), the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenylene iodonium (DPI), and the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580. Apoptosis was evaluated by TUNEL analysis and cell viability was determined by MTT assay. Reactive oxygen species (ROS) were detected by 2',7'-dichlorodihydrofluorescein diacetate (H(2) DCFH-DA). Expression of p-p38 MAPK protein was measured by Western blot analysis. Our findings indicate that statins treatment significantly suppressed oxidant-induced ROS accumulation and RPE apoptosis. Statins increased cell viability in a dose-dependent manner. In addition, statins treatment prevented the activation of NADPH oxidase and p38 MAPK signaling induced by oxidative stress. These results suggest that statins protects ARPE cells from oxidative stress via an NADPH oxidase and/or p38 MAPK-dependent mechanisms, which may contribute to statins-induced beneficial effects on RPE function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号