首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The attachment of enzymes to glass microfluidic channels has been achieved using a highly reactive poly(maleic anhydride-alt-alpha-olefin) (PMA)-based coating that is supplied to the microchannel in a toluene solution. The PMA reacts with 3-aminopropyltriethoxysilane groups linked to the glass surface to form a matrix that enables additional maleic anhydride groups to react with free amino groups on enzymes to give a mixed covalent-noncovalent immobilization support. Using a simple T-channel microfluidic design, with reaction channel dimensions of 200 microm wide (at the center), 15 microm deep, and 30 mm long giving a reaction volume of 90 nL, soybean peroxidase (SBP) was attached at an amount up to 0.6 microg/channel. SBP-catalyzed oxidation of p-cresol was performed in aqueous buffer (with 20% [v/v], dimethylformamide) containing H(2)O(2), with microfluidic transport enabled by electroosmotic flow (EOF). Michaelis-Menten kinetics were obtained with K(m) and V(max) values of 0.98 mM and 0.21 micromol H(2)O(2) converted/mg SBP per minute, respectively. These values are nearly identical to nonimmobilized SBP kinetics in aqueous-DMF solutions in 20-microL volumes in 384-well plates and 5-mL reaction volumes in 20-mL scintillation vials. These results indicate that SBP displays intrinsically native activity even in the immobilized form at the microscale, and further attests to the mild immobilization conditions afforded by PMA. Bienzymic and trienzymic reactions were also performed in the microfluidic biochip. Specifically, a combined Candida antarctica lipase B-SBP bienzymic system was used to convert tolyl acetate into poly(p-cresol), and an invertase-glucose oxidase SBP trienzymic system was used to take sucrose and generate H(2)O(2) for SBP-catalyzed synthesis of poly(p-cresol).  相似文献   

2.
Ma Z  Gao BZ 《Biotechnology letters》2012,34(7):1385-1391
To understand how stem cells benefit native cardiomyocytes is crucial for cell-based therapies to rescue cardiomyocytes (CMCs) damaged during heart infarction and other cardiac diseases. However, the current conclusions on the protective effect of mesenchymal stem cells (MSCs) were obtained by analyzing the overall amount of protein and factor secretion in a conventional co-culture system. These results neglected the heterogeneity of MSC population and failed to determine the importance of cellular contact to the protective effects. To address these issues, we have constructed two biochips by microfabrication methods and laser-guided cell micropatterning technique. Using the biochips, the protective effect of MSCs on CMCs can be quantitatively analyzed at single-cell level with defined cellular contact. The role of cellular contact on protective effect can be clarified according to our statistical results.  相似文献   

3.
A series of biochip readers developed for gel-based biochips includes three imaging models and a novel nonimaging biochip scanner. The imaging readers, ranging from a research-grade versatile reader to a simple portable one, use wide-field objectives and 12-bit digital large-coupled device cameras for parallel addressing of multiple array elements. This feature is valuable for monitoring the kinetics of sample interaction with immobilized probes. Depending on the model and the label used, the sensitivity of these readers approaches 0.3 amol of a labeled sample per gel element. In the selective scanner, both the spot size of the excitation laser beam and the detector field of view match the size of the biochip array elements so that the whole row of the array can be read in a single scan. The portable version reads 50-mm long, 150-element, one-dimensional arrays in 5 s. With a dynamic range of 4000:1, a sensitivity of 1-5 amol of a labeled sample per gel element, and a data format facilitating online processing, the scanner is an attractive, inexpensive solution for biomedical diagnostics. Fluorophores for sample labeling were compared experimentally in terms of detection sensitivity, influence on duplex stability, and suitability for multilabel analysis and thermodynamic studies. Texas Red and tetracarboxyphenylporphyn proved to be the best choice for two-wavelength analysis using the imaging readers.  相似文献   

4.
5.
Somatic mutations in the KRAS gene are important markers of some types of tumors, for example, pancreatic cancer, and may be useful in early diagnostics. A biochip has been developed which allows determining most frequent mutations in 12, 13 and 61 codons of the KRAS gene. To increase the sensitivity of the method and to make possible the analysis of minor fractions of tumor cells in clinical samples the method of blocking a wild type sequence PCR amplification by LNA-oligonucleotides has been used. The product of LNA-clamp PCR was further hybridized with oligonucleotide probes, immobilized on biochip. Biochip was tested with 42 clinical DNA samples from patients with pancreatic cancer, mostly ductal adenocarcinomas. As reference methods, the RFLP analysis and sequencing were used. The developed approach allows detecting somatic mutations in the KRAS gene if the portion of tumor cells with mutation is at least 1% of whole cell population.  相似文献   

6.
A biochip for detecting 26 cluster differentiation (CD), HLA-DR and IgM antigens on lymphocyte surface is described. The biochip, which represents a microarray of antibodies (IgG) against a panel of selected antigens immobilized on transparent plastic surfaces in 1.5-mm spots, was used for the study of normal and neoplastic lymphocytes and can also be used for determining percent of cells expressing definite surface antigens in lymphocyte suspensions. The results are consistent with data obtained by flow cytometry. The novel biochip technology entails a combination of conventional staining of cells immobilized on biochips and morphological analysis.  相似文献   

7.
8.
9.
Ifosfamide-induced nephrotoxicity is a serious adverse effect in children undergoing chemotherapy. Our previous cell and rodent models have shown that the antioxidant N-acetylcysteine (NAC), used extensively as an antidote for acetaminophen poisoning, protects renal tubular cells from ifosfamide-induced nephrotoxicity at a clinically relevant concentration. For the use of NAC to be clinically relevant in preventing ifosfamide nephrotoxicity, we must ensure there is no effect of NAC on the antitumor activity of ifosfamide. Common pediatric tumors that are sensitive to ifosfamide, human neuroblastoma SK-N-BE(2) and rhabdomyosarcoma RD114-B cells, received either no pretreatment or pretreatment with 400 μmol/L of NAC, followed by concurrent treatment with NAC and either ifosfamide or the active agent ifosfamide mustard. Ifosfamide mustard significantly decreased the growth of both cancer cell lines in a dose-dependent manner (p < 0.001). The different combined treatments of NAC alone, sodium 2-mercaptoethanesulfonate alone, or NAC plus sodium 2-mercaptoethanesulfonate did not significantly interfere with the tumor cytotoxic effect of ifosfamide mustard. These observations suggest that NAC may improve the risk/benefit ratio of ifosfamide by decreasing ifosfamide-induced nephrotoxicity without interfering with its antitumor effect in cancer cells clinically treated with ifosfamide.  相似文献   

10.
It has been previously reported that green-tea extract (GTE) inhibits the growth of influenza virus by preventing its adsorption. In this study, we further investigated whether GTE exerts an additional inhibitory effect on the acidification of intracellular compartments such as endosomes and lysosomes (referred to as ELS) and thereby inhibits the growth of influenza A and B viruses in Madin-Darby canine kidney cells. The vital fluorescence microscopic study showed that GTE inhibited acidification of ELS in a concentration-dependent manner. Moreover, the growth of influenza A and B viruses was equally inhibited when the cells were treated with GTE within as early as 5 to 15 min after infection, depending on the virus strains. The fact that (-)epigallocatechin (EGC), one of major catechin molecules in GTE, exerts the inhibitory effects on the acidification of ELS and virus growth in a manner similar to that of GTE strongly suggests that EGC is one of the active components in the extract.  相似文献   

11.
The human folate receptor (hFR) is a glycosylphosphatidy-linositol (GPI) linked plasma membrane protein that mediates delivery of folates into cells. We studied the sorting of the hFR using transfection of the hFR cDNA into MDCK cells. MDCK cells are polarized epithelial cells that preferentially sort GPI-linked proteins to their apical membrane. Unlike other GPI-tailed proteins, we found that in MDCK cells, hFR is functional on both the apical and basolateral surfaces. We verified that the same hFR cDNA that transfected into CHO cells produces the hFR protein that is GPI-linked. We also measured the hFR expression on the plasma membrane of type III paroxysmal nocturnal hemoglobinuria (PNH) human erythrocytes. PNH is a disease that is characterized by the inability of cells to express membrane proteins requiring a GPI anchor. Despite this defect, and different from other GPI-tailed proteins, we found similar levels of hFR in normal and type III PNH human erythrocytes. The results suggest the hypothesis that there may be multiple mechanisms for targeting hFR to the plasma membrane.  相似文献   

12.
Alterations in the structural organization of MDCK cells under the effect of arginine-vasopressin (AVP) have been studied using electron and fluorescent microscopy methods. Electron microscopy has confirmed that the MDCK cells in the monolayer have structurally different apical and basolateral surfaces separated by well-formed zones of intercellular contacts. AVP has been proven to bind specifically to receptors on the basolateral cell surface and be internalized from the cell surface after 10–15 min. AVP produces fragmentation of the Golgi apparatus and swelling in its cisternae due to the appearance of an osmotic water flow across the monolayer. The significant depolymerization of the cell’s actin cytoskeleton has been revealed under effect of AVP or forskolin (an adenylyl cyclase activator). The functional role and regulatory mechanisms of the described structural alterations are discussed.  相似文献   

13.
Cytomatrix synthesis in MDCK epithelial cells   总被引:1,自引:0,他引:1  
Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak (J. Biol. Chem., 256:4863-4870, 1981), was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with [14C]leucine over several days and then pulse-labeled for 4 hours with [3H]leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form. The results suggest that metabolic coupling between individual cellular filament systems is not strict. The data are, however, consistent with models that predict that assembly of a subcellular structure influences the turnover of its component proteins.  相似文献   

14.
15.
Polarity of the Forssman glycolipid in MDCK epithelial cells   总被引:3,自引:0,他引:3  
To determine whether epithelial plasma membrane glycolipids are polarized in a manner analogous to membrane proteins, MDCK cells grown on permeable filters were analyzed for the expression of Forssman ceramide pentasaccharide, the major neutral glycolipid in these cells. In contrast to a recent report which described exclusive apical localization of the Forssman glycolipid (Hansson, G.C., Simons, K. and Van Meer, G. (1986) EMBO J. 5, 483-489), immunofluorescence and immunoelectron microscopic staining revealed the Forssman glycolipid on both the apical and basolateral surfaces of polarized cells. Immunoblots indicated that the Forssman antigen was detectable only on glycolipids and not on proteins. Analysis of metabolically labeled glycolipids released into the apical and basal culture medium, either as shed membrane vesicles or in budding viruses, also demonstrated the presence of the Forssman glycolipid on both apical and basolateral membranes of polarized cells. Quantitation of the released glycolipid indicated that the Forssman glycolipid was concentrated in the apical membrane. These results are consistent with previous reports which described quantitative enrichment of glycolipids in the apical domain of several epithelia.  相似文献   

16.
Studies on the adaptation of influenza viruses to MDCK cells   总被引:16,自引:2,他引:16       下载免费PDF全文
The amino acid sequences and biological properties of the haemagglutinin of three variants of the influenza virus X-31 (H3N2) selected for their capacity to grow in MDCK cells are reported. In two variants, amino acid substitutions at HA1 residues 8 and 144 correlated with the loss of a site for glycosylation and specific changes in antigenicity, respectively. In all three variants substitution of an arginine residue for histidine at HA1 position 17 was correlated with increased pH optima of haemolysis. The importance of this substitution for cleavage of the haemagglutinin precursor required to produce infectious virus is discussed in relation to the three-dimensional structure of X-31 haemagglutinin.  相似文献   

17.
18.
In non-polarized cell culture models, influenza virus has been shown to enter host cells via multiple endocytic pathways, including classical clathrin-mediated endocytic routes (CME), clathrin- and caveolae-independent routes and macropinocytosis. However, little is known about the entry route of influenza virus in differentiated epithelia, in vivo site of infection for influenza virus. Here, we show that in polarized Madin–Darby canine kidney type II (MDCK II) cells, influenza virus has a specific utilization of the clathrin-mediated endocytic pathway and requires Eps15 for host cell entry.  相似文献   

19.
C M Lo  C R Keese    I Giaever 《Biophysical journal》1995,69(6):2800-2807
Transepithelial impedance of Madin-Darby canine kidney cell layers is measured by a new instrumental method, referred to as electric cell-substrate impedance sensing. In this method, cells are cultured on small evaporated gold electrodes, and the impedance is measured in the frequency range 20-50,000 Hz by a small probing current. A model for impedance analysis of epithelial cells measured by this method is developed. The model considers three different pathways for the current flowing from the electrode through the cell layer: (1) in through the basal and out through the apical membrane, (2) in through the lateral and out through the apical membrane, and (3) between the cells through the paracellular space. By comparing model calculation with experimental impedance data, several morphological and cellular parameters can be determined: (1) the resistivity of the cell layer, (2) the average distance between the basal cell surface and substratum, and (3) the capacitance of apical, basal, and lateral cell membranes. This model is used to analyze impedance changes on removal of Ca2+ from confluent Mardin-Darby canine kidney cell layers. The method shows that reduction of Ca2+ concentration causes junction resistance between cells to drop and the distance between the basal cell surface and substratum to increase.  相似文献   

20.
Recently, it was demonstrated that delivery from the trans-Golgi network (TGN) to the basolateral surface of Madin-Darby canine kidney (MDCK) cells required N-ethylmaleimide-sensitive factor (NSF)-alpha soluble NSF attachment protein (SNAP)-SNAP receptor (SNARE) complexes, while delivery from the TGN to the apical surface was independent of NSF-alpha SNAP-SNARE. To determine if all traffic to the apical surface of this cell line was NSF independent, we reconstituted the transcytosis of pre-internalized IgA to the apical surface and recycling to the basolateral surface. Transcytosis and the recycling of IgA required ATP and cytosol, and both were inhibited by treatment with N-ethylmaleimide. This inhibition was reversed by the addition of recombinant NSF. Botulinum neurotoxin serotype E, which is known to cleave the 25,000 Da synaptosomal associated protein, inhibited both transcytosis and recycling, although incompletely. We conclude that membrane traffic to a target membrane is not determined by utilizing a single molecular mechanism for fusion. Rather, a target membrane, e.g. the apical plasma membrane of MDCK cells, may use multiple molecular mechanisms to fuse with incoming vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号