首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the density of NMDA (GluN) receptors in the neuronal membrane are critical for plasticity, whereas malfunction of precisely regulated GluN receptor activity may be involved in neurotoxicity. In cultured rat neocortical interneurons, we have studied the regulation of the surface density of GluN1, GluN2A and GluN2B subunits. Application of 5 μMol NMDA for 24 h followed by a washout period of 24 h decreased the response of GluN receptors for at least 2?days. The reduction was caused by a decrease in the surface density of GluN1/GluN2B subunits, whereas GluN2A subunits remained unaffected. Our data indicate that long but reversible low level activation of GluN receptors can cause long-term changes in their subunit composition in cultured interneurons.  相似文献   

2.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   

3.
Gray JA  Shi Y  Usui H  During MJ  Sakimura K  Nicoll RA 《Neuron》2011,71(6):1085-1101
During development there is an activity-dependent switch in synaptic N-Methyl-D-aspartate (NMDA) receptor subunit composition from predominantly GluN2B to GluN2A, though the precise role of this?switch remains unknown. By deleting GluN2 subunits in single neurons during synaptogenesis, we find that both GluN2B and GluN2A suppress AMPA receptor expression, albeit by distinct means. Similar to GluN1, GluN2B deletion increases the number of functional synapses, while GluN2A deletion increases the strength of unitary connections without affecting the number of functional synapses. We propose a model of excitatory synapse maturation in which baseline activation of GluN2B-containing receptors prevents premature synapse maturation until correlated activity allows induction of functional synapses. This activity also triggers the switch to GluN2A, which dampens further potentiation. Furthermore, we analyze the subunit composition of synaptic NMDA receptors in CA1 pyramidal cells, provide electrophysiological evidence for?a large population of synaptic triheteromeric receptors, and estimate the subunit-dependent open probability.  相似文献   

4.
5.
The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design.  相似文献   

6.
Lee CH  Gouaux E 《PloS one》2011,6(4):e19180
The N-methyl-D-aspartate (NMDA) receptor, an obligate heterotetrameric assembly organized as a dimer of dimers, is typically composed of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 subunits. Despite the crucial role that the NMDA receptor plays in the nervous system, the specific arrangement of subunits within the dimer-of-dimer assemblage is not conclusively known. Here we studied the organization of the amino terminal domain (ATD) of the rat GluN1/GluN2A and GluN1/GluN2B NMDA receptors by cysteine-directed, disulfide bond-mediated cross-linking. We found that GluN1 ATDs and GluN2 ATDs spontaneously formed disulfide bond-mediated dimers after introducing cysteines into the L1 interface of GluN2A or GluN2B ATD. The formation of dimer could be prevented by knocking out endogenous cysteines located near the L1 interface of GluN1. These results indicate that GluN1 and GluN2 ATDs form local heterodimers through the interactions in the L1-L1 interface and further demonstrate a dimer-of-heterodimer arrangement in GluN1/GluN2A and GluN1/GluN2B NMDA receptors.  相似文献   

7.
NMDA receptors are heteromeric glutamate-gated channels composed of GluN1 and GluN2 subunits. Receptor isoforms that differ in their GluN2-subunit type (A-D) are expressed differentially throughout the central nervous system and have distinct kinetic properties in recombinant systems. How specific receptor isoforms contribute to the functions generally attributed to NMDA receptors remains unknown, due in part to the incomplete functional characterization of individual receptor types and unclear molecular composition of native receptors. We examined the stationary gating kinetics of individual rat recombinant GluN1/GluN2B receptors in cell-attached patches of transiently transfected HEK293 cells and used kinetic analyses and modeling to describe the full range of this receptor's gating behaviors. We found that, like GluN1/GluN2A receptors, GluN1/GluN2B receptors have three gating modes that are distinguishable by their mean open durations. However, for GluN1/GluN2B receptors, the modes also differed markedly in their mean closed durations and thus generated a broader range of open probabilities. We also found that regardless of gating mode, glutamate dissociation occurred ∼4-fold more slowly (k = 15 s−1) compared to that observed in GluN1/GluN2A receptors. On the basis of these results, we suggest that slow glutamate dissociation and modal gating underlie the long heterogeneous activations of GluN1/GluN2B receptors.  相似文献   

8.
J. Neurochem. (2012) 121, 597-606. ABSTRACT: In cultured rat neocortical interneurons, we have studied the effect of long-term application of NMDA or AMPA on the surface density of the NMDA (GluN) receptor subunits GluN1 and GluN2B. Stimulation of Ca(2+) -permeable AMPA (GluA) receptors located on the interneurons decreased the response of GluN receptors. The reduction was caused by a decrease in the surface density of GluN1/GluN2B subunits. In contrast, stimulation of GluN receptors located on the interneurons enhanced the surface density of GluN1/GluN2B subunits. Both effects could be induced by network activation.  相似文献   

9.
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.  相似文献   

10.
It is currently unclear whether the GluN2 subtype influences NMDA receptor (NMDAR) excitotoxicity. We report that the toxicity of NMDAR-mediated Ca(2+) influx is differentially controlled by the cytoplasmic C-terminal domains of GluN2B (CTD(2B)) and GluN2A (CTD(2A)). Studying the effects of acute expression of GluN2A/2B-based chimeric subunits with reciprocal exchanges of their CTDs revealed that CTD(2B) enhances NMDAR toxicity, compared to CTD(2A). Furthermore, the vulnerability of forebrain neurons in?vitro and in?vivo to NMDAR-dependent Ca(2+) influx is lowered by replacing the CTD of GluN2B with that of GluN2A by targeted exon exchange in a mouse knockin model. Mechanistically, CTD(2B) exhibits stronger physical/functional coupling to the PSD-95-nNOS pathway, which suppresses protective CREB activation. Dependence of NMDAR excitotoxicity on the GluN2 CTD subtype can be overcome by inducing high levels of NMDAR activity. Thus, the identity (2A versus 2B) of the GluN2 CTD controls the toxicity dose-response to episodes of NMDAR activity.  相似文献   

11.
N-methyl-d-aspartate receptors (NMDA receptors) play critical roles in brain functions and diseases. The expression, trafficking, synaptic location and function of different NMDA receptor subtypes are not static, but regulated dynamically in a cell-specific and synapse-specific manner during physiological and pathological conditions. In this review, we will examine recent evidence on the post-translational modulation of NMDA receptors subunit, in particular GluN2B subunit, such as phosphorylation, palmitoylation, and ubiquitination. In parallel, we will overview the roles of these modifications of GluN2B-NMDA receptor subtype in physiological functions, such as learning and memory, and pathophysiological conditions, such as chronic pain, ischemia and neurodegenerative diseases.  相似文献   

12.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to debilitating cognitive deficits. Recent evidence demonstrates that glutamate receptors are dysregulated by amyloid beta peptide (Aβ) oligomers, resulting in disruption of glutamatergic synaptic transmission which parallels early cognitive deficits. Although it is well accepted that neuronal death in AD is related to disturbed intracellular Ca(2+) (Ca(2+)(i)) homeostasis, little is known about the contribution of NMDARs containing GluN2A or GluN2B subunits on Aβ-induced Ca(2+)(i) rise and neuronal dysfunction. Thus, the main goal of this work was to evaluate the role of NMDAR subunits in dysregulation of Ca(2+)(i) homeostasis induced by Aβ 1-42 preparation containing both oligomers (in higher percentage) and monomers in rat cerebral cortical neurons. The involvement of NMDARs was evaluated by pharmacological inhibition with MK-801 or the selective GluN2A and GLUN2B subunit antagonists NVP-AAM077 and ifenprodil, respectively. We show that Aβ, like NMDA, increase Ca(2+)(i) levels mainly through activation of NMDARs containing GluN2B subunits. Conversely, GluN2A-NMDARs antagonism potentiates Ca(2+)(i) rise induced by a high concentration of Aβ (1μM), suggesting that GluN2A and GluN2B subunits have opposite roles in regulating Ca(2+)(i) homeostasis. Moreover, Aβ modulate NMDA-induced responses and vice versa. Indeed, pre-exposure to Aβ (1μM) decrease NMDA-evoked Ca(2+)(I) rise and pre-exposure to NMDA decrease Aβ response. Interestingly, simultaneous addition of Aβ and NMDA potentiate Ca(2+)(I) levels, this effect being regulated by GluN2A and GluN2B subunits in opposite manners. This study contributes to the understanding of the molecular basis of early AD pathogenesis, by exploring the role of GluN2A and GluN2B subunits in the mechanism of Aβ toxicity in AD.  相似文献   

13.
The N-methyl-d-aspartate (NMDA) glutamate receptor is a major target of ethanol in the brain. Previous studies have identified positions in the third and fourth membrane-associated (M) domains of the NMDA receptor GluN1 and GluN2A subunits that influence alcohol sensitivity. The predicted structure of the NMDA receptor, based on that of the related GluA2 subunit, indicates a close apposition of the alcohol-sensitive positions in M3 and M4 between the two subunit types. We tested the hypothesis that these positions interact to regulate receptor kinetics and ethanol sensitivity by using dual substitution mutants. In single-substitution mutants, we found that a position in both subunits adjacent to one previously identified, GluN1(Gly-638) and GluN2A(Phe-636), can strongly regulate ethanol sensitivity. Significant interactions affecting ethanol inhibition and receptor deactivation were observed at four pairs of positions in GluN1/GluN2A: Gly-638/Met-823, Phe-639/Leu-824, Met-818/Phe-636, and Leu-819/Phe-637; the latter pair also interacted with respect to desensitization. Two interactions involved a position in M4 of both subunits, GluN1(Met-818) and GluN2A(Leu-824), that does not by itself alter ethanol sensitivity, whereas a previously identified ethanol-sensitive position, GluN2A(Ala-825), did not unequivocally interact with any other position tested. These results also indicate a shift by one position of the predicted alignment of the GluN1 M4 domain. These findings have allowed for the refinement of the NMDA receptor M domain structure, demonstrate that this region can influence apparent agonist affinity, and support the existence of four sites of alcohol action on the NMDA receptor, each consisting of five amino acids at the M3-M4 domain intersubunit interfaces.  相似文献   

14.
In this paper, we studied differences in the density of N-methyl-D-aspartate (NMDA) receptor GluN2B subunits in the brains of low (LR) and high (HR) anxiety rats subjected to extinction trials and re-learning of a conditioned fear response, modeling a natural course of anxiety disorders. Classifications of animals as LR or HR was determined by fear-induced freezing responses in the contextual fear test. Increased basal concentrations of GluN2B subunits were observed in the amygdala of HR rats as compared to the unconditioned control group by Western blot analysis. Re-exposure of HR animals to the fear-conditioned context resulted in elevated concentrations of GluN2B subunits in the amygdala, hippocampus and the prefrontal cortex compared to LR rats as well as in the hippocampus and prefrontal cortex vs. the control group. In addition, it was shown that re-test of a conditioned fear increased the number of cells expressing GluN2B subunits in the basolateral amygdala, dentate gyrus of the hippocampus and secondary motor cortex (M2) in the HR group relative to the LR group. Together, these data suggest that animals that are more anxious have altered patterns of GluN2B subunit expression in the frontal cortex and limbic structures, which control emotional behaviour.  相似文献   

15.
The GluN2 subunits that compose NMDA receptors (NMDARs) determine functional and pharmacological properties of the receptor. In the striatum, functions and potential dysfunctions of NMDARs attributed to specific GluN2 subunits have not been clearly elucidated, although NMDARs play critical roles in the interactions between glutamate and dopamine. Through the use of amperometry and field potential recordings in mouse brain slices, we found that NMDARs that contain the GluN2D subunit contribute to NMDA‐induced inhibition of evoked dopamine release and of glutamatergic neurotransmission in the striatum of control mice. Inhibition is likely mediated through increased firing in cholinergic interneurons, which were shown to express GluN2D. Indeed, NMDA‐induced inhibition of both dopamine release and glutamatergic neurotransmission is reduced in the presence of muscarinic receptor antagonists and is mimicked by a muscarinic receptor agonist. We have also examined whether this function of GluN2D‐containing NMDARs is altered in a mouse model of Parkinson's disease. We found that the inhibitory role of GluN2D‐containing NMDARs on glutamatergic neurotransmission is impaired in the 6‐hydroxydopamine lesioned striatum. These results identify a role for GluN2D‐containing NMDARs and adaptive changes in experimental Parkinsonism. GluN2D might constitute an attractive target for the development of novel pharmacological tools for therapeutic intervention in Parkinson's disease.

  相似文献   


16.
N-methyl-d-aspartate (NMDA) receptors are the only neurotransmitter receptors whose activation requires two distinct agonists. Heterotetramers of two GluN1 and two GluN2 subunits, NMDA receptors are broadly distributed in the central nervous system, where they mediate excitatory currents in response to synaptic glutamate release. Pore opening depends on the concurrent presence of glycine, which modulates the amplitude and time course of the glutamate-elicited response. Gating schemes for fully glutamate- and glycine-bound NMDA receptors have been described in sufficient detail to bridge the gap between microscopic and macroscopic receptor behaviors; for several receptor isoforms, these schemes include glutamate-binding steps. We examined currents recorded from cell-attached patches containing one GluN1/GluN2A receptor in the presence of several glycine-site agonists and used kinetic modeling of these data to develop reaction schemes that include explicit glycine-binding steps. Based on the ability to match a series of experimentally observed macroscopic behaviors, we propose a model for activation of the glutamate-bound NMDA receptor by glycine that predicts apparent negative agonist cooperativity and glycine-dependent desensitization in the absence of changes in microscopic binding or desensitization rate constants. These results complete the basic steps of an NMDA receptor reaction scheme for the GluN1/GluN2A isoform and prompt a reevaluation of how glycine controls NMDA receptor activation. We anticipate that our model will provide a useful quantitative instrument to further probe mechanisms and structure–function relationships of NMDA receptors and to better understand the physiological and pathological implications of endogenous fluctuations in extracellular glycine concentrations.  相似文献   

17.
The NMDA receptor, which is heavily involved in several human brain diseases, is a heteromeric ligand-gated ion channel that interacts with multiple intracellular proteins through the C-termini of different subunits. GluN2A and GluN2B are the two primary types of GluN2 subunits in the forebrain. During the developmental period, there is a switch from GluN2B- to GluN2A-containing NMDA receptors in synapses. In the adult brain, GluN2A exists at synaptic sites more abundantly than GluN2B. GluN2A plays important roles not only in synaptic plasticity but also in mediating physiological functions, such as learning and memory. GluN2A has also been involved in many common human diseases, such as cerebral ischemia, seizure disorder, Alzheimer’s disease, and systemic lupus erythematosus. The following review investigates the functional and molecular properties, physiological functions, and pathophysiological roles of the GluN2A subunit.  相似文献   

18.
GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.  相似文献   

19.
NMDA receptors (NMDARs) form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a "proximal" position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular) and functional (plasma-membrane inserted) pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors.  相似文献   

20.
N-methyl-d-aspartate (NMDA) receptors, one of the three main types of ionotropic glutamate receptors (iGluRs), are involved in excitatory synaptic transmission, and their dysfunction is implicated in various neurological disorders. NMDA receptors, heterotetramers typically composed of GluN1 and GluN2 subunits, are the only members of the iGluR family that bind allosteric modulators at their amino-terminal domains (ATDs). We used luminescence resonance energy transfer to characterize the conformational changes the receptor undergoes upon binding ifenprodil, a synthetic compound that specifically inhibits activation of NMDA receptors containing GluN2B. We found that ifenprodil induced an overall closure of the GluN2B ATD without affecting conformation of the GluN1 ATD or the upper lobes of the ATDs, the same mechanism whereby zinc inhibits GluN2A. These data demonstrate that the conformational changes induced by zinc and ifenprodil represent a conserved mechanism of NMDA receptor inhibition. Additionally, we compared the structural mechanism of zinc inhibition of GluN1–GluN2A receptors to that of ifenprodil inhibition of GluN1–GluN2B. The similarities in the conformational changes induced by inhibitor binding suggest a conserved structural mechanism of inhibition independent of the binding site of the modulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号