首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple-CoA dehydrogenase deficiency (MADD) is an inborn disorder of fatty acid and amino acid metabolism caused by mutations in the genes encoding for human electron transfer flavoprotein (ETF) and its partner electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). Albeit a rare disease, extensive newborn screening programs contributed to a wider coverage of MADD genotypes. However, the impact of non-lethal mutations on ETF:QO function remains scarcely understood from a structural perspective. To this end, we here revisit the relatively common MADD mutation ETF:QO-p.Pro456Leu, in order to clarify how it affects enzyme structure and folding. Given the limitation in recombinant expression of human ETF:QO, we resort to its bacterial homologue from Rhodobacter sphaeroides (Rs), in which the corresponding mutation (p.Pro389Leu) was inserted. The in vitro biochemical and biophysical investigations of the Rs ETF:QO-p.Pro389Leu variant showed that, while the mutation does not significantly affect the protein α/β fold, it introduces some plasticity on the tertiary structure and within flavin interactions. Indeed, in the p.Pro389Leu variant, FAD exhibits a higher thermolability during thermal denaturation and a faster rate of release in temperature-induced dissociation experiments, in comparison to the wild type. Therefore, although this clinical mutation occurs in the ubiquinone domain, its effect likely propagates to the nearby FAD binding domain, probably influencing electron transfer and redox potentials. Overall, our results provide a molecular rational for the decreased enzyme activity observed in patients and suggest that compromised FAD interactions in ETF:QO might account for the known riboflavin responsiveness of this mutation.  相似文献   

2.
In the three maternal effect lethal mutant strains of D. melanogaster described in this report, the homozygous mutant females produce defective eggs that cannot support normal embryonic development. The embryos from these eggs begin to develop for the first 2 hr after fertilization in an apparently normal way, forming a blastula containing a cluster of pole cells at the posterior end and a layer of syncytial blastoderm nuclei. During the subsequent transition from a syncytial to a cellular blastoderm, cell formation in the blastoderm is either partially or totally blocked. In mutant mat(3)1 no blastoderm cells are formed, indicating that there are separate genetic controls for pole cells and blastoderm cells. The other two mutants form an incomplete cellular blastoderm in which certain regions of the blastoderm remain noncellular. The noncellular region in mutant mat(3)3 is on the posterior-dorsal surface, covering about 30% of the total blastoderm. In mutant mat(3)6 blastoderm cells are formed only at the anterior and posterior ends, separated by a noncellular region that covers about 70% of the total blastoderm. The selective effects on blastoderm cell formation in the three mutants emphasize the importance of components present in the egg before fertilization for the transition from a syncytial to a cellular blastoderm.The genes defective in the three mutants are essential only for oogenesis and not for any other period of development, as indicated by a strict dependence of the lethal phenotypes on the maternal genotypes. Heterozygous embryos from the eggs of homozygous mutant females die, whereas homozygous mutant embryos from the eggs of heterozygous females develop into viable adults.One of the mutants, mat(3)3, has a temperature-sensitive phenotype. Homozygous mat(3)3 females maintained at a restrictive temperature of 29°C show the lethal maternal effect. However, at a permissive temperature of 20°C the females produce viable adult progeny. The temperature-sensitive period in mat(3)3 females occurs during the last 12 hr of oogenesis, consistent with the maternal effect phenotype of the mutant.  相似文献   

3.
The metaphase to anaphase transition is a critical stage of the eukaryotic cell cycle, and, thus, it is highly regulated. Errors during this transition can lead to chromosome segregation defects and death of the organism. In genetic screens for temperature-sensitive maternal effect embryonic lethal (Mel) mutants, we have identified 32 mutants in the nematode Caenorhabditis elegans in which fertilized embryos arrest as one-cell embryos. In these mutant embryos, the oocyte chromosomes arrest in metaphase of meiosis I without transitioning to anaphase or producing polar bodies. An additional block in M phase exit is evidenced by the failure to form pronuclei and the persistence of phosphohistone H3 and MPM-2 antibody staining. Spermatocyte meiosis is also perturbed; primary spermatocytes arrest in metaphase of meiosis I and fail to produce secondary spermatocytes. Analogous mitotic defects cause M phase delays in mitotic germline proliferation. We have named this class of mutants "mat" for metaphase to anaphase transition defective. These mutants, representing six different complementation groups, all map near genes that encode subunits of the anaphase promoting complex or cyclosome, and, here, we show that one of the genes, emb-27, encodes the C. elegans CDC16 ortholog.  相似文献   

4.
In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.  相似文献   

5.
BACKGROUND: Although centrosomes serve as the primary organizing centers for the microtubule-based cytoskeleton in animal cells, various studies question the requirements for these organelles during the formation of microtubule arrays and execution of microtubule-dependent processes. Using a genetic approach to interfere with centrosomal function, we present an assessment of this issue, in the context of early embryogenesis of the fruit fly Drosophila melanogaster. RESULTS: We identified mutant alleles of the centrosomin (cnn) locus, which encodes a core component of centrosomes in Drosophila. The cnn mutant flies were viable but sterile. The normal course of early embryonic development was arrested in all progeny of cnn mutant females. Our analysis identified a failure to form functional centrosomes and spindle poles as the primary mutant phenotype of cnn embryos. Various aspects of early development that are dependent on cytoskeletal control were disrupted in cnn mutant embryos. In particular, structural rearrangements of cortical microfilaments were strongly dependent on proper centrosomal function. CONCLUSIONS: Centrosomin is an essential core component of early embryonic centrosomes in Drosophila. Microtubule-dependent events of early embryogenesis display differential requirements for centrosomal function.  相似文献   

6.
7.
The eukaryotic origin recognition complex (ORC) is made up of six subunits and functions in nuclear DNA replication, chromatin structure, and gene silencing in both fungi and metazoans. We demonstrate that disruption of a plant ORC subunit homolog, AtORC2 of Arabidopsis (Arabidopsis thaliana), causes a zygotic lethal mutant phenotype (orc2). Seeds of orc2 abort early, typically producing embryos with up to eight cells. Nuclear division in the endosperm is arrested at an earlier developmental stage: only approximately four nuclei are detected in orc2 endosperm. The endosperm nuclei in orc2 are dramatically enlarged, a phenotype that is most similar to class B titan mutants, which include mutants in structural maintenance of chromosomes (SMC) cohesins. The highest levels of ORC2 gene expression were found in preglobular embryos, coinciding with the stage at which homozygous orc2 mutant seeds arrest. The homologs of the other five Arabidopsis ORC subunits are also expressed at this developmental stage. The orc2 mutant phenotype is partly suppressed by a mutation in the Polycomb group gene MEDEA. In double mutants between orc2 and medea (mea), orc2 homozygotes arrest later with a phenotype intermediate between those of mea and orc2 single mutants. Either alterations in chromatin structure or the release of cell cycle checkpoints by the mea mutation may allow more cell and nuclear divisions to occur in orc2 homozygous seeds.  相似文献   

8.
In cell culture assays, Frizzled and Dfrizzled2, two members of the Frizzled family of integral membrane proteins, are able to bind Wingless and transduce the Wingless signal. To address the role of these proteins in the intact organism and to explore the question of specificity of ligand-receptor interactions in vivo, we have conducted a genetic analysis of frizzled and Dfrizzled2 in the embryo. These experiments utilize a small gamma-ray-induced deficiency that uncovers Dfrizzled2. Mutants lacking maternal frizzled and zygotic frizzled and Dfrizzled2 exhibit defects in the embryonic epidermis, CNS, heart and midgut that are indistinguishable from those observed in wingless mutants. Epidermal patterning defects in the frizzled, Dfrizzled2 double-mutant embryos can be rescued by ectopic expression of either gene. In frizzled, Dfrizzled2 mutant embryos, ectopic production of Wingless does not detectably alter the epidermal patterning defect, but ectopic production of an activated form of Armadillo produces a naked cuticle phenotype indistinguishable from that produced by ectopic production of activated Armadillo in wild-type embryos. These experiments indicate that frizzled and Dfrizzled2 function downstream of wingless and upstream of armadillo, consistent with their proposed roles as Wingless receptors. The lack of an effect on epidermal patterning of ectopic Wingless in a frizzled, Dfrizzled2 double mutant argues against the existence of additional Wingless receptors in the embryo or a model in which Frizzled and Dfrizzled2 act simply to present the ligand to its bona fide receptor. These data lead to the conclusion that Frizzled and Dfrizzled2 function as redundant Wingless receptors in multiple embryonic tissues and that this role is accurately reflected in tissue culture experiments. The redundancy of Frizzled and Dfrizzled2 explains why Wingless receptors were not identified in earlier genetic screens for mutants defective in embryonic patterning.  相似文献   

9.
During a screen for mutants with defective germination, a newphenotype was observed consisting of red pigmentation of theembryonic axis in the dormant seed. Segregation ratios, as determinedin F2 and back-crossed progeny, indicate that the phenotypeis due to a recessive single gene mutation that has been symbolizedrea to denote red embryonic axis. A closer inspection of therea phenotype revealed that the mutant is occasionally viviparous,indicating a defect in abscisic acid (ABA) metabolism. The mutationprobably affects ABA sensitivity since no difference in ABAcontent was detected in mutant versus normal tissues. Moreover,when immature mutant and wild-type embryos were incubated onmedia containing 10 M ABA, only the mutants germinated. ABA-regulatedgene expression in rea embryos differed from that of embryosof the viviparous mutant vp1 which does not respond to the inhibitoryaction of ABA at the level of immature embryo germination. Theseresults, therefore, indicate that the two genes exert a differentrole in the control of embryogenesis. Key words: Zea mays L, embryo dormancy, ABA  相似文献   

10.
《FEBS letters》1998,441(2):261-265
In order to investigate the biological function of phosphatidylinositol-specific phospholipase C (PLC) we generated mutant mice by gene targeting. Homozygous inactivation of PLCβ3 is lethal at embryonic day 2.5. These mutants show poor embryonic organization as well as reduced numbers of cells. Identical phenotypes were recorded in homozygous mutants generated from two independently targeted embryonic stem cell clones. Heterozygous mutant mice, however, are viable and fertile for at least two generations. We also showed that mouse PLCβ3 is expressed in unfertilized eggs, 3-cell and egg cylinder stages of embryos. In conclusion, these results indicate that PLCβ3 expression is essential for early mouse embryonic development.  相似文献   

11.
Sheridan WF  Neuffer MG 《Genetics》1980,95(4):945-960
This report presents the initial results of our study of the immature kernel stage of 150 defective kernel maize mutants. They are single gene, recessive mutants that map throughout the genome, defective in both endosperm and embryo development and, for the most part, lethal (Neuffer and Sheridan 1980). All can be distinguished on immature ears, and 85% of them reveal a mutant phenotype within 11 to 17 days post-pollination. Most have immature kernels that are smaller and lighter in color than their normal counterparts. Forty of the mutants suffer from their defects early in kernel development and are blocked in embryogenesis before their primordia differentiate, or, if primordia are formed, they are unable to germinate when cultured as immature embryos or tested at maturity; a few begin embryo degeneration prior to the time that mutant kernels became visually distinguishable. The others express the associated lesion later in kernel development and form at least one leaf primordium by the time kernels are distinguishable and will germinate when cultured or tested at maturity. In most cases, on a fresh weight basis, the mutants have embryos that are more severely defective than the endosperm; their embryos usually are no more than one-half to two-thirds the size, and lag behind by one or two developmental stages. in comparison with embryos in normal kernels from the same ear. One hundred and two mutants were examined by culturing embryos on basal and enriched media; 21 simply enlarged or completely failed to grow on any of the media tested; and 81 produced shoots and roots on at least one medium. Many grew equally well on basal and enriched media; 16 grew at a faster rate on basal medium and 23 displayed a superior growth on enriched medium. Among the latter group, 10 may be auxotrophs. One of these mutants and another mutant isolated by E. H. Coe are proline-requiring mutants, allelic to pro-1. Considering their diversity of expression as evidenced by their differences in morphological appearance, degree of defectiveness and response to embryo culturing, we believe that they represent many different gene loci.  相似文献   

12.
A. Kania  A. Salzberg  M. Bhat  D. D'Evelyn  Y. He  I. Kiss    H. J. Bellen 《Genetics》1995,139(4):1663-1678
The Drosophila embryonic peripheral nervous system (PNS) is an excellent model system to study the molecular mechanisms governing neural development. To identify genes controlling PNS development, we screened 2000 lethal P-element insertion strains. The PNS of mutant embryos was examined using the neural specific marker MAb 22C10, and 92 mutant strains were retained for further analysis. Genetic and cytological analysis of these strains shows that 42 mutations affect previously isolated genes that are known to be required for PNS development: longitudinals lacking (19), mastermind (15), numb (4), big brain (2), and spitz (2). The remaining 50 mutations were classified into 29 complementation groups and the P-element insertions were cytologically mapped. The mutants were classified in five major classes on the basis of their phenotype: gain of neurons, loss of neurons, organizational defects, pathfinding defects and morphological defects. Herein we report the preliminary phenotypic characterization of each of these complementation groups as well as the embryonic lacZ expression pattern of each P-element strain. Our analysis indicates that in most of the P-element insertion strains, the lacZ reporter gene is not expressed in the developing PNS.  相似文献   

13.
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a mitochondrial fatty acid oxidation disorder caused by mutations that affect electron transfer flavoprotein (ETF) or ETF:ubiquinone oxidoreductase (ETF-QO) or even due to unidentified disturbances of riboflavin metabolism. Besides all the available data on the molecular basis of FAO disorders, including MADD, the pathophysiological mechanisms underlying clinical phenotype development, namely at the mitochondrial level, are poorly understood. In order to contribute to the elucidation of these mechanisms, we isolated mitochondria from cultured fibroblasts, from a patient with a severe MADD presentation due to ETF-QO deficiency, characterize its mitochondrial proteome and compare it with normal controls. The used approach (2-DE-MS/MS) allowed the positive identification of 287 proteins in both patient and controls, presenting 35 of the significant differences in their relative abundance. Among the differentially expressed are proteins associated to binding/folding functions, mitochondrial antioxidant enzymes as well as proteins associated to apoptotic events. The overexpression of chaperones like Hsp60 or mitochondrial Grp75, antioxidant enzymes and apoptotic proteins reflects the mitochondrial response to a complete absence of ETF-QO. Our study provides a global perspective of the mitochondrial proteome plasticity in a severe case of MADD and highlights the main molecular pathways involved in its pathogenesis.  相似文献   

14.
The hydra mutants of Arabidopsis are characterized by a pleiotropic phenotype that shows defective embryonic and seedling cell patterning, morphogenesis, and root growth. We demonstrate that the HYDRA1 gene encodes a Delta8-Delta7 sterol isomerase, whereas HYDRA2 encodes a sterol C14 reductase, previously identified as the FACKEL gene product. Seedlings mutant for each gene are similarly defective in the concentrations of the three major Arabidopsis sterols. Promoter::reporter gene analysis showed misexpression of the auxin-regulated DR5 and ACS1 promoters and of the epidermal cell file-specific GL2 promoter in the mutants. The mutants exhibit enhanced responses to auxin. The phenotypes can be rescued partially by inhibition of auxin and ethylene signaling but not by exogenous sterols or brassinosteroids. We propose a model in which correct sterol profiles are required for regulated auxin and ethylene signaling through effects on membrane function.  相似文献   

15.
C. elegans is proving useful for the study of cell determination in early embryos. Breeding experiments with embryonic lethal mutants show that abnormal embryogenesis often results from defective gene function in the maternal parent, suggesting that much of the information for normal embryonic development is laid down during oogenesis. Analysis of a gut-specific differentiation marker in cleavage-arrested embryos has provided evidence that the potential for this differentiation behaves as a cell-autonomous internally segregating developmental determinant, which is present from the 2-cell stage onward and is partitioned into the gut precursor cell during early cleavage divisions. Visible prelocalized cytoplasmic granules that segregate with a particular cell lineage have heen observed in the embryonic germline precursor cells by fluorescent antibody staining. Whether these granules play a role in germline determina... [remainder of abstract missing in original]  相似文献   

16.
17.
18.
C. elegans first stage (L1) larvae hatched in the absence of food, arrest development and enter an L1 diapause, whereby they can survive starvation for several weeks. The physiological and metabolic requirements for survival during L1 diapause are poorly understood. However, yolk, a cholesterol binding/transport protein, has been suggested to serve as an energy source. Here, we demonstrate that C. elegans TBC-2, a RAB-5 GTPase Activating Protein (GAP) involved in early-to-late endosome transition, is important for yolk protein storage during embryogenesis and for L1 survival during starvation. We found during embryogenesis, that a yolk::green fluorescent protein fusion (YP170::GFP), disappeared much more quickly in tbc-2 mutant embryos as compared with wild-type control embryos. The premature disappearance of YP170::GFP in tbc-2 mutants is likely due to premature degradation in the lysosomes as we found that YP170::GFP showed increased colocalization with Lysotracker Red, a marker for acidic compartments. Furthermore, YP170::GFP disappearance in tbc-2 mutants required RAB-7, a regulator of endosome to lysosome trafficking. Although tbc-2 is not essential in fed animals, we discovered that tbc-2 mutant L1 larvae have strongly reduced survival when hatched in the absence of food. We show that tbc-2 mutant larvae are not defective in maintaining L1 diapause and that mutants defective in yolk uptake, rme-1 and rme-6, also had strongly reduced L1 survival when hatched in the absence of food. Our findings demonstrate that TBC-2 is required for yolk protein storage during embryonic development and provide strong correlative data indicating that yolk constitutes an important energy source for larval survival during L1 diapause.  相似文献   

19.
A spontaneous morphological mutation characterized by a short and kinky tail (Tail-short Shionogi: Tss) was observed in a BALB/cMs mouse breeding colony. The inheritance mode of the Tss mutation is semi-dominant, and homozygotes (Tss/Tss) are probably embryonic lethal. The viability of the Tss/+ heterozygotes appear to be influenced by the mating partner: 47.1% of the (BALB/cMs-Tss/+ x C57BL/6J)F1 embryos were the mutant phenotype, whereas there were no (BALB/cMs-Tss/+ x A/J)F1 embryos with the mutant phenotype. The Tss locus was mapped by linkage analysis between microsatellite markers D11Mit128 and D11Mit256 on mouse Chromosome 11. These results suggest that the Tss mutation is a new allele on the Tail-short (Ts) locus.  相似文献   

20.
Leafy Cotyledon Mutants of Arabidopsis   总被引:11,自引:1,他引:10       下载免费PDF全文
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to abscisic acid (ABA) in culture, describe other mutants with related phenotypes, and summarize studies with double mutants. Our results indicate that immature embryos precociously enter a germination pathway after the torpedo stage of development and then acquire characteristics normally restricted to vegetative parts of the plant. In contrast to other viviparous mutants of maize (vp1) and Arabidopsis (abi3) that produce ABA-insensitive embryos, immature lec embryos are sensitive to ABA in culture. ABA is therefore necessary but not sufficient for embryonic maturation in Arabidopsis. Three other mutants that produce trichomes on cotyledons following precocious germination in culture are described. One mutant is allelic to lec1, another is a fusca mutant (fus3), and the third defines a new locus (lec2). Mutant embryos differ in morphology, desiccation tolerance, pattern of anthocyanin accumulation, presence of storage materials, size and frequency of trichomes on cotyledons, and timing of precocious germination in culture. The leafy cotyledon phenotype has therefore allowed the identification of an important network of regulatory genes with overlapping functions during embryonic maturation in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号