首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most cases, advanced stages of melanoma are practically incurable due to high metastatic potential of tumor cells. Multiple observations support the idea that aberrations in Wnt signaling pathway play a significant role in melanoma development and progression. Canonical Wnt signaling activation results in stabilization and accumulation of the major effector molecule called beta-catenin. Mutations promoting beta-catenin stabilization and, thereby, activation of canonical Wnt signaling pathway are frequently found in different cancers, but rarely observed in melanomas. Nevertheless, beta-catenin nuclear and cytoplasmic accumulation is the feature of many human melanoma cell lines and original tumors. That is why, the aim of the investigation was to elucidate the relation between beta-catenin intracellular localization and activity status of Wnt signaling pathway in human melanoma cell lines. Ten human melanoma cell lines were characterized on the basis of the following parameters: canonical Wnt ligand expression, intracellular beta-catenin localization, and activity status of canonical Wnt signaling pathway. Here, it has been demonstrated that nuclear localization of beta-catenin does not always correspond to active status canonical Wnt signaling pathway. Moreover, in the majority of cell lines with nuclear beta-catenin canonical Wnt signaling can't be activated by exogenous expression of an appropriate ligand. Human melanoma cell lines differ in activity of canonical Wnt signaling pathway as well as in mechanisms of its regulation. Therefore, the pathway-targeted potential antineoplastic therapy requires the formation of a "molecular pattern of cancer" for localization of the defect in Wnt signaling cascade in the each case.  相似文献   

2.
Retinoblastoma is a pediatric retinal tumor caused by mutational inactivation of the tumor suppressor pRb. Additional genetic changes, as yet unidentified, are believed to be required for tumor initiation. Mutations in the Wnt signaling pathway have been implicated in the pathogenesis of many cancers. Multiple Wnt pathway genes are expressed in the retina and the pRb and Wnt pathways interact biochemically, raising the possibility that alterations in the Wnt pathway contribute to retinoblastoma. Our studies showed that Wnt signaling activation significantly decreased the viability of retinoblastoma cell lines by inducing cell cycle arrest, which was associated with upregulated p53. Furthermore, immunolocalization of the Wnt signaling mediator beta-catenin in human and mouse retinoblastoma tissue indicated that canonical Wnt signaling is suppressed in tumors in vivo. These studies are consistent with the Wnt pathway acting as a tumor suppressor in retinoblastoma and suggest that loss of Wnt signaling is tumorigenic in the retina.  相似文献   

3.
Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling.  相似文献   

4.
5.
Osteoarthritis is the most prevalent form of arthritis in the world. Certain signaling pathways, such as the wnt pathway, are involved in cartilage pathology. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to chondrocyte de-differentiation. We investigated whether the Wnt pathway is involved in de-differentiation of human articular chondrocytes in vitro. Human articular chondrocytes were cultured for four passages in the presence or absence of IL-1 in monolayer or micromass culture. Changes in cell morphology were monitored by light microscopy. Protein and gene expression of chondrocyte markers and Wnt pathway components were determined by Western blotting and qPCR after culture. After culturing for four passages, chondrocytes exhibited a fibroblast-like morphology. Collagen type II and aggrecan protein and gene expression decreased, while collagen type I, matrix metalloproteinase 13, and nitric oxide synthase expressions increased. Wnt molecule expression profiles changed; Wnt5a protein expression, the Wnt target gene, c-jun, and in Wnt pathway regulator, sFRP4 increased. Treatment with IL-1 caused chondrocyte morphology to become more filament-like. This change in morphology was accompanied by extinction of col II expression and increased col I, MMP13 and eNOS expression. Changes in expression of the Wnt pathway components also were observed. Wnt7a decreased significantly, while Wnt5a, LRP5, β-catenin and c-jun expressions increased. Culture of human articular chondrocytes with or without IL-1 not only induced chondrocyte de-differentiation, but also changed the expression profiles of Wnt components, which suggests that the Wnt pathway is involved in chondrocyte de-differentiation in vitro.  相似文献   

6.
In most cases, advanced stages of melanoma are practically incurable due to high metastatic potential of tumor cells. Multiple observations support the idea that aberrations in the Wnt signaling pathway play a significant role in melanoma development and progression. Canonical Wnt signaling activation results in stabilization and accumulation of the major effector molecule called & gb-catenin. Mutations promoting & gb-catenin stabilization and, thereby, activation of canonical Wnt signaling pathway are frequently found in different cancers but rarely observed in melanomas. Nevertheless, & gb-catenin nuclear and cytoplasmic accumulation is the feature of many human melanoma cell lines and original tumors. That is why the aim of the investigation was to elucidate the relation between & gb-catenin intracellular localization and activity status of Wnt signaling pathway in human melanoma cell lines. Ten human melanoma cell lines were characterized on the basis of the following parameters: canonical Wnt ligand expression, intracellular & gb-catenin localization and activity status of canonical Wnt signaling pathway. Here, it has been demonstrated that nuclear localization of & gb-catenin does not always correspond to active status of canonical Wnt signaling pathway. Moreover, in the majority of cell lines with nuclear & gb-catenin, canonical Wnt signaling cannot be activated by exogenous expression of an appropriate ligand. Human melanoma cell lines differ in activity of canonical Wnt signaling pathway as well as in mechanisms of its regulation. Therefore, pathway-targeted potential antineoplastic therapy requires the formation of a & ldmolecular pattern of cancer” for localization of the defect in Wnt signaling cascade in each case.  相似文献   

7.
8.
WIF-1是Wnt信号通路上的拮抗物之一,可以阻断Wnt的经典通路和非经典通路。目前在人类多种肿瘤的研究发现WIF-1表达异常。WIF-1(Wnt inhibitory factor-1),sFRP(Frizzled related protein)和CER(Cerberus)属于Wnt拮抗物家族,通过直接与Wnt蛋白相连从而阻止Wnt与受体蛋白复合物相连,使细胞质中的β-catenin由于磷酸化而不能积累,进而阻断了经典通路和非经典通路。WIF-1可能与中胚层的发生以及肿瘤细胞的生长分化有关。Wnt家族其他成员已经被证实与早期冠心病、Ⅱ型糖尿病、肥胖症、骨质疏松症等相关。因此了解WIF-1在通路上的更多信息,解释WIF-1调节Wnt信号通路的机理和过程,为疾病治疗和预防以及药物开发提供新的方法。  相似文献   

9.
10.
In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.  相似文献   

11.
12.
13.
As the crucial biological regulators, microRNAs that act by suppressing their target genes are involved in a variety of pathophysiological processes. It is generally accepted that microRNAs are often dysregulated in many types of neoplasm and other human diseases. In neoplasm, microRNAs may function as oncogenes or tumor suppressors. As constitutive activation of the Wnt signaling pathway is a common feature of neoplasm and contributes to its development, progression and metastasis in various cancers, numerous studies have revealed that microRNA-mediated gene regulation are interconnected with the Wnt/β-catenin signaling pathway, forming a Wnt/β-catenin–microRNA regulatory network, which is critical to successful targeting of the Wnt/β-catenin pathway for oncotherapy. In this review, we aim to accumulate recent advances on microRNAs that work in tandem with Wnt/β-catenin signaling in tumorigenesis, with particular focus on how microRNAs affect Wnt/β-catenin activity as well as how microRNAs are regulated through the Wnt/β-catenin pathway.  相似文献   

14.
15.
16.

Background  

The Wnt signal transduction pathway is important in a wide variety of developmental processes as well as in the genesis of human cancer. Vertebrate Wnt pathways can be functionally separated into two classes, the canonical Wnt/beta-catenin pathway and the non-canonical Wnt/Ca2+ pathway. Supporting differences in Wnt signaling, gain of function of Wnt-1 in C57mg mouse mammary epithelial cells leads to their morphological transformation while loss of function of Wnt-5a leads to the same transformation. Many downstream target genes of the Wnt/beta-catenin pathway have been identified. In contrast, little is known about the Wnt/Ca2+ pathway and whether it regulates gene expression.  相似文献   

17.
18.
近年来,随着对肿瘤的深入研究,Wnt信号的研究也受到了高度的关注.Wnt信号通路是一条在进化上保守的信号途径,在控制胚胎发育,调节细胞生长、迁移、分化,调控正常组织重建等生命活动中发挥重要的作用,其异常活化与众多人类肿瘤的发生、发展密切相关.Wnt信号途径异常的核心是β-catenin在细胞内累积,并通过其下游途径引起特异靶基因的转录.本文着重介绍Wnt/β-catenin信号转导通路的研究进展及其与肿瘤的关系,了解该通路在肿瘤发生过程中的具体分子机制有助于为临床诊断提供依据,为早期干预治疗提供方法.  相似文献   

19.
Wnt signalling, a key pathway involved in various aspects of embryonic development, also underlies many human diseases, in particular, cancer. Research focused on signal transduction within signal-receiving cells led to the discovery of many Wnt pathway components, but study of the secretion of Wnt ligands themselves was neglected until recently. Attention was drawn to this highly regulated process by the association of aberrant Wnt levels with an increasing number of diseases. Studying the biogenesis and processing of active Wnt ligands will open new avenues for generating therapeutics to specifically target aberrant Wnt signalling. Here we review the proteins required for Wnt secretion and signalling at the plasma membrane, ending with a discussion on potential therapeutic approaches to treat Wnt-induced diseases.  相似文献   

20.
Pancreatic ductal adenocarcinoma (PDA) is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号