首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We examined DNA double-strand-break-induced mutations in the endogenous adenine phosphoribosyl-transferase (APRT) gene in cultured Chinese hamster ovary cells after exposure to restriction endonucleases. PvuII, EcoRV, and StuI, all of which produce blunt-end DNA double-strand breaks, were electroporated into CHO-AT3-2 cells hemizygous at the APRT locus. Colonies of viable cells containing mutations at APRT were expanded, and the mutations that occurred during break repair were analyzed at the DNA sequence level. Restriction enzyme-induced mutations consisted of small deletions of 1 to 36 bp, insertions, and combinations of insertions and deletions at the cleavage sites. Most of the small deletions involved overlaps of one to four complementary bases at the recombination junctions. Southern blot analysis revealed more complex mutations, suggesting translocation, inversion, or insertion of larger chromosomal fragments. These results indicate that blunt-end DNA double-strand breaks can induce illegitimate (nonhomologous) recombination in mammalian chromosomes and that they play an important role in mutagenesis.  相似文献   

4.
Induction and repair of DNA breaks following irradiation with NIRS cyclotron neutrons were studied in cultured mammalian cells (L5178Y) in comparison to those following gamma-rays. The yield of the total single-strand breaks, 3'OH terminals and sites susceptible to S1 endonuclease following fast neutrons was found to be approximately 50 per cent of that following gamma-irradiation. On the other hand, the yield of double-strand breaks was slightly higher after fast neutrons than after gamma-rays. The percentage of the total single-strand breaks remaining unrejoined at 3 hours after post-irradiation incubation was found to be distinctly higher after the fast neutrons than after gamma-rays. The neutron-induced damage appears to carry a higher proportion of alkali-labile lesions compared to gamma-rays. It was concluded that the increase in the yield of double-strand breaks and of unrejoinable breaks is responsible for a high r.b.e. of the cyclotron neutrons.  相似文献   

5.
Quantitation of single- and double-strand DNA breaks in vitro and in vivo   总被引:4,自引:0,他引:4  
This communication describes a rapid and convenient procedure for quantitation of strand breaks in bacterial DNA, both in vitro and in vivo, using agarose gel electrophoresis. The electrophoretic determination of single strand breaks is carried out in alkaline medium, followed by renaturation of the gel and intercalation of the fluorescent dye, ethidium bromide. Double-strand breaks are determined by electrophoresis in neutral medium containing the dye. The distribution of DNA fragment sizes, the determination of the number-average molecular weight, the quantitation of the average number of DNA breaks per molecule, and the ratio between the single- and double-strand breaks are evaluated from microdensitometric scanning of the gels. The application of this analysis to damage caused by a combination of ascorbate and copper is demonstrated.  相似文献   

6.
Induction of DNA double-strand breaks by 157Gd neutron capture   总被引:3,自引:0,他引:3  
The rationale of boron (10B) neutron capture therapy (BNCT) is based on the high thermal neutron capture cross section of 10B and the limited maximum range (about one cell diameter) of the high LET fission products of the boron neutron capture (NC) reaction. The resulting radiochemical damage is confined to the cell containing the BNC reaction. Although other nuclides have higher thermal neutron capture cross sections than 10B, NC by such nuclides results in the emission of highly penetrating gamma rays. However, gadolinium-157 (157Gd) n-gamma reaction is also accompanied by some internal conversion and, by implication, Auger electron emission. Irradiation of Gd3+-DNA complexes with thermal neutrons results in the induction of DNA double-strand (ds) breaks, but the effect is largely abrogated in the presence of EDTA. Thus, by analogy with the effects of decay of Auger electron-emitting isotopes such as 125I, the Gd NC event must take place in the close proximity of DNA in order to induce a DNA ds break. It is proposed that 157Gd-DNA ligands therefore have potential in NCT. The thermal neutron capture cross section of 157Gd, a nonradioactive isotope, is more than 50 times that of 10B.  相似文献   

7.
Alteration of genomic information through homologous recombination (HR) is a powerful tool for reverse genetics in bacteria, yeast, and mice. The low frequency of HR is, however, a major obstacle to achieve efficient gene targeting. In this study, we have developed an assay system for investigating the frequency of gene targeting in cultured silkworm cells using a firefly luciferase gene as a reporter. The introduction of a DNA double-strand break (DSB) either in the chromosomal target locus or in the targeting construct drastically increased the frequency of gene targeting. Interestingly, the inhibition of poly(ADP-ribose) polymerase (PARP), a protein known to play an important role in overall suppression of the HR pathway, stimulated the targeting efficiency, whereas the overexpression of two silkworm RecA homologs, BmRad51 and BmDmc1, had no effect. The presently devised assay system may serve as a useful tool to improve the gene targeting efficiency in the silkworm (Bombyx mori).  相似文献   

8.
Humanblood leukocytes exposed to X-rays were immersed in an agarose microgel on a slide, extensively deproteinized, and electrophoresed under neutral conditions. Following this single-cell gel electrophoresis assay, characteristics of DNA migration (i.e., area of the comet) are related to the DNA double-strand breaks (dsbs) yield. After electrophoresis, comets were briefly incubated in an alkaline unwinding solution, transforming DNA breaks and alkali-labile sites into restricted single-stranded DNA (ssDNA) motifs. These motifs behave as target sites for hybridization with a whole genome probe, following the DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure. As DNA breakage increases with dose, more ssDNA is produced in the comet by the alkali and more DNA probe hybridizes, resulting in an increase in the mean fluorescence intensity. Since radiation-induced DNA single-strand breaks (ssbs) are far more frequent than dsbs, the mean fluorescence intensity of the DBD-FISH signal from the comet is related to the ssb level, whereas the surface area of the same comet signal is indicative of the dsb yield. Thus, both DNA break types may be simultaneously analyzed in the same cell. This was confirmed in a repair assay performing the DBD-FISH on neutral comets from a human cell line defective in the repair of dsbs. Otherwise, treatment with hydrogen peroxide, a main inducer of ssbs, increased the mean fluorescence intensity, but not the surface, of X-ray-exposed human leukocytes.  相似文献   

9.
Rejoining of single-strand breaks of DNA in cultured mammalian cells   总被引:5,自引:0,他引:5  
  相似文献   

10.
We measured the yield and spectrum of strand breaks and nucleobase lesions produced in fully hydrated plasmid DNA films to determine the linear energy transfer (LET) dependence of DNA damage induced by ion-beam irradiation in relation to the change in the atomic number of ions. The yield of isolated damage was revealed as a decrease in prompt SSBs with increasing LET of He(2+), C(5+,6+) and Ne(8+,10+) ions. On the other hand, the yields of prompt DSBs increased with increasing ion LET. SSBs were additionally induced in ion-irradiated DNA film by treatment with two kinds of base excision repair proteins (glycosylases), Nth and Fpg, indicating that base lesions are produced in the hydrated DNA film. This result shows that nucleobase lesions are produced via both chemical reactions with diffusible water radicals, such as OH radicals, and direct energy deposition onto DNA and the hydrated water layer. Nth-sensitive sites deduced to be pyrimidine lesions, such as 5,6-dihydrothymine (DHT), showed a relatively larger yield than Fpg-sensitive sites deduced to be purine lesions, such as 7,8-dihydro-8-oxo-2'deoxyguanine (8-oxoGua), for all ion exposures tested. The yield of SSBs or DSBs observed by enzyme treatment decreased noticeably with increasing LET for all tested ions. These results indicated that higher-LET ions preferentially produce a complex type of damage that might compromise the activities of the glycosylases used in this study. These findings are biologically important since, under cell mimicking conditions, persistent DNA damage occurs in part due to direct energy deposition on the DNA or hydrated water shell that is specifically induced by dense ionization in the track.  相似文献   

11.
Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cells. Mutant hamster cells (xrs-5), deficient in non-homologous end joining (NHEJ), were irradiated at 37 degrees C to determine whether any additional double-strand breaks (DSBs) are formed during processing of gamma-radiation-induced DNA clustered damage sites. A class of non-DSB clustered DNA damage, corresponding to approximately 30% of the initial yield of DSBs, is converted into DSBs reflecting an artefact of preparation of genomic DNA for pulsed field gel electrophoresis. These clusters are removed within 4 min in both NHEJ-deficient and wild-type CHO cells. In xrs-5 cells, a proportion of non-DSB clustered DNA damage, representing approximately 10% of the total yield of non-DSB clustered DNA damage sites, are also converted into DSBs within approximately 30 min post-gamma but not post-alpha irradiation through cellular processing at 37 degrees C. That the majority of radiation-induced non-DSB clustered DNA damage sites are resistant to conversion into DSBs may be biologically significant at environmental levels of radiation exposure, as a non-DSB clustered damage site rather than a DSB, which only constitutes a minor proportion, is more likely to be induced in irradiated cells.  相似文献   

12.
We have developed a high efficiency system in which mammalian extracts join DNA double-strand breaks with non-complementary termini. This system has been used to obtain a large number of junction sequences from a range of different break-end combinations, allowing the elucidation of the joining mechanisms. Using an extract of calf thymus it was found that the major mechanism of joining was by blunt-end ligation following removal or fill-in of the single-stranded bases. However, some break-end combinations were joined through an efficient mechanism using short repeat sequences and we have succeeded in separating this mechanism from blunt-end joining by the biochemical fractionation of extracts. Characterization of activities and sequence data in an extensively purified fraction that will join ends by the repeat mechanism led to a model where joining is initiated by 3' strand invasion followed by pairing to short repeat sequences close to the break site. Thus the joining of double-strand breaks by mammalian extracts is achieved by several mechanisms and this system will allow the purification of the factors involved in each by the judicial choice of the non-complementary ends used in the assay.  相似文献   

13.
Positional stability of single double-strand breaks in mammalian cells   总被引:7,自引:0,他引:7  
Formation of cancerous translocations requires the illegitimate joining of chromosomes containing double-strand breaks (DSBs). It is unknown how broken chromosome ends find their translocation partners within the cell nucleus. Here, we have visualized and quantitatively analysed the dynamics of single DSBs in living mammalian cells. We demonstrate that broken ends are positionally stable and unable to roam the cell nucleus. Immobilization of broken chromosome ends requires the DNA-end binding protein Ku80, but is independent of DNA repair factors, H2AX, the MRN complex and the cohesion complex. DSBs preferentially undergo translocations with neighbouring chromosomes and loss of local positional constraint correlates with elevated genomic instability. These results support a contact-first model in which chromosome translocations predominantly form among spatially proximal DSBs.  相似文献   

14.
By the method of gel electrophoresis, radiation-induced DNA single- and double-strand breaks (SSB, DSB) were studied with a model system of pBR322 solution in vitro in the presence of ·OH radical scavengers, mannitol and TE (10–2 mol dm–3 Tris and 10–3 mol dm–3 ethylene diamine tetra-acetic acid). Experiments showed that SSB resulted from one-hit events of radiation energy deposition and DSB resulted from both one-hit and two-hit energy deposition events and so were distinguished into two classes of αDSB and βDSB. Moreover, α/β, where α is the number of DSB per unit dose induced in one irradiation event and β the number of DSB per unit squared dose induced by the combination of two independent SSB, was related to the scavenging capacity, σ, and for σ>108 s–1,αDSB predominate over DSB. On the other hand, if σ<2×108 s–1, the measured G(αDSB) decreased in parallel with G(SSB), i.e., G(αDSB)/G(SSB) was a constant. When σ>2×108 s–1, G(αDSB) decreased slightly so that the ratio of αDSB to SSB evidently increased. Therefore, αDSB could be induced by the radical transfer mechanism for σ<2×108 s–1 and contrarily produced by the local multiply damaged sites (LMDS) mechanism for σ larger than this value. In addition, the distance for two independent complementary SSB forming a DSB was deduced, but no apparent variation of it was found in the wide σ range from ∼105 to ∼109 s–1, which shows that the DNA steric structure was not influenced by mannitol. Received: 28 September 1998 / Accepted in revised form: 20 March 1999  相似文献   

15.
Capture of DNA sequences at double-strand breaks in mammalian chromosomes   总被引:8,自引:0,他引:8  
Lin Y  Waldman AS 《Genetics》2001,158(4):1665-1674
To study double-strand break (DSB)-induced mutations in mammalian chromosomes, we transfected thymidine kinase (tk)-deficient mouse fibroblasts with a DNA substrate containing a recognition site for yeast endonuclease I-SceI embedded within a functional tk gene. To introduce a genomic DSB, cells were electroporated with a plasmid expressing endonuclease I-SceI, and clones that had lost tk function were selected. Among 253 clones analyzed, 78% displayed small deletions or insertions of several nucleotides at the DSB site. Surprisingly, approximately 8% of recovered mutations involved the capture of one or more DNA fragments. Among 21 clones that had captured DNA, 10 harbored a specific segment of the I-SceI expression plasmid mapping between two replication origins on the plasmid. Four clones had captured a long terminal repeat sequence from an intracisternal A particle (an endogenous retrovirus-like sequence) and one had captured what appears to be a cDNA copy of a moderately repetitive B2 sequence. Additional clones displayed segments of the tk gene and/or microsatellite sequences copied into the DSB. This first systematic study of DNA capture at DSBs in a mammalian genome suggests that DSB repair may play a considerable role in the evolution of eukaryotic genomes.  相似文献   

16.
Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93-101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2(-/-) cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.  相似文献   

17.
In this study the induction of double-strand breaks (DSBs) was investigated in Chinese hamster V79-379A cells irradiated with the Auger-electron emitter (125)I incorporated into DNA. The role of chromatin organization was studied by pulse-labeling synchronized cells with (125)IdU before decay accumulation in early or late S phase. Pulsed-field gel electrophoresis and fragment-size analysis were used to quantify the distribution of DNA fragments in irradiated intact cells and naked DNA as well as in DNA from asynchronously labeled cultures in a different scavenging environment. The results show that in intact cells, after accumulation of decays at -70 degrees C in the presence of 10% DMSO, almost four times more DSBs were induced in late S phase compared with early S phase and the fragment distribution was clearly non-random with an excess of fragments <0.2 Mbp. The DSB yield was 0.6 DSB/cell and decay for cells irradiated in early S phase and 2.3 DSBs/cell and decay for cells irradiated in late S phase. When similar experiments were performed on naked genomic DNA or intact cells irradiated with gamma rays, the difference in yield was not as prominent. These data imply a role of chromatin organization in the induction of DSBs by DNA-incorporated (125)I. In summary, the results presented here suggest that the yield of DSBs as well as the fragment distribution induced by (125)IdU decay may vary significantly depending on the chromatin organization during S phase and the labeling procedure used.  相似文献   

18.
The repair of DNA double-strand breaks (DSB) requires processing of the broken ends to complete the ligation process. Recently, it has been shown that DNA polymerase μ (polμ) and DNA polymerase λ (polλ) are both involved in such processing during non-homologous end joining in vitro. However, no phenotype was observed in animal models defective for either polμ and/or polλ. Such observations could result from a functional redundancy shared by the X family of DNA polymerases. To avoid such redundancy and to clarify the role of polμ in the end joining process, we generated cells over-expressing the wild type as well as an inactive form of polμ (polμD). We observed that cell sensitivity to ionizing radiation (IR) was increased when either polμ or polμD was over-expressed. However, the genetic instability in response to IR increased only in cells expressing polμD. Moreover, analysis of intrachromosomal repair of the I-SceI-induced DNA DSB, did not reveal any effect of either polμ or polμD expression on the efficiency of ligation of both cohesive and partially complementary ends. Finally, the sequences of the repaired ends were specifically affected when polμ or polμD was over-expressed, supporting the hypothesis that polμ could be involved in the repair of a DSB subset when resolution of junctions requires some gap filling.  相似文献   

19.
Mutants with defects in the rejoining of DNA double-strand breaks (dsbs) have been identified and characterised from E. coli and the yeast, Saccharomyces cerevisiae. More recently, 3 mammalian cell mutants with defective dsb rejoining have also been described. These mutants are xrs, XR-1 and L5178Y/S, and they are derived from at least two distinct complementation groups. The aim of this article is to review the current status of the studies with these mammalian cell mutants which are defective in dsb rejoining and, in particular, to compare their properties with those mutants identified from lower organisms. Possible mechanistic differences in the process of dsb rejoining between prokaryotes and lower and higher eukaryotes are discussed. All the mammalian mutants defective in dsb rejoining, are sensitive primarily to ionising radiation with little cross-sensitivity to UV-radiation. This is similar to the rad52 mutants of S. cerevisiae but contrasts to the majority of the E. coli mutants with defective dsb rejoining. Where studied, the mammalian cell mutants show enhanced resistance to ionizing radiation in late S/G2 phase, which, in one case, correlates with an enhanced ability to rejoin dsbs. This, together with other evidence, suggests that two mechanisms of dsb rejoining may exist in higher eukaryotes, one which operates uniquely in S/G2 phase and a second mechanism operating throughout the cell cycle and dependent upon the xrs and XR-1 gene products (although whether the xrs and XR-1 dependent pathways are distinct cannot at present be ascertained). Since duplicate homologues will be present in late S/G2 phase cells, this pathway may involve a recombinational mechanism. The xrs-dependent pathway might involve illegitimate recombination, but the xrs mutants do not appear to have a major defect in homologous recombination (involving plasmid DNA) and in this respect are distinct from rad52 mutants.  相似文献   

20.
To study repair of DNA double-strand breaks (DSBs) in mammalian chromosomes, we designed DNA substrates containing a thymidine kinase (TK) gene disrupted by the 18-bp recognition site for yeast endonuclease I-SceI. Some substrates also contained a second defective TK gene sequence to serve as a genetic donor in recombinational repair. A genomic DSB was induced by introducing endonuclease I-SceI into cells containing a stably integrated DNA substrate. DSB repair was monitored by selection for TK-positive segregants. We observed that intrachromosomal DSB repair is accomplished with nearly equal efficiencies in either the presence or absence of a homologous donor sequence. DSB repair is achieved by nonhomologous end-joining or homologous recombination, but rarely by nonconservative single-strand annealing. Repair of a chromosomal DSB by homologous recombination occurs mainly by gene conversion and appears to require a donor sequence greater than a few hundred base pairs in length. Nonhomologous end-joining events typically involve loss of very few nucleotides, and some events are associated with gene amplification at the repaired locus. Additional studies revealed that precise religation of DNA ends with no other concomitant sequence alteration is a viable mode for repair of DSBs in a mammalian genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号