首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dbp6p is an essential putative ATP-dependent RNA helicase that is required for 60S-ribosomal-subunit assembly in the yeast Saccharomyces cerevisiae (D. Kressler, J. de la Cruz, M. Rojo, and P. Linder, Mol. Cell. Biol. 18:1855-1865, 1998). To identify factors that are functionally interacting with Dbp6p, we have performed a synthetic lethal screen with conditional dbp6 mutants. Here, we describe the cloning and the phenotypic analysis of the previously uncharacterized open reading frame YPL193W, which we renamed RSA1 (ribosome assembly 1). Rsa1p is not essential for cell viability; however, rsa1 null mutant strains display a slow-growth phenotype, which is exacerbated at elevated temperatures. The rsa1 null allele synthetically enhances the mild growth defect of weak dbp6 alleles and confers synthetic lethality when combined with stronger dbp6 alleles. Polysome profile analysis shows that the absence of Rsa1p results in the accumulation of half-mer polysomes. However, the pool of free 60S ribosomal subunits is only moderately decreased; this is reminiscent of polysome profiles from mutants defective in 60S-to-40S subunit joining. Pulse-chase labeling of pre-rRNA in the rsa1 null mutant strain indicates that formation of the mature 25S rRNA is decreased at the nonpermissive temperature. Interestingly, free 60S ribosomal subunits of a rsa1 null mutant strain that was grown for two generations at 37 degrees C are practically devoid of the 60S-ribosomal-subunit protein Qsr1p/Rpl10p, which is required for joining of 60S and 40S subunits (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136-5145, 1997). Moreover, the combination of the Deltarsa1 and qsr1-1 mutations leads to a strong synthetic growth inhibition. Finally, a hemagglutinin epitope-tagged Rsa1p localizes predominantly to the nucleoplasm. Together, these results point towards a function for Rsa1p in a late nucleoplasmic step of 60S-ribosomal-subunit assembly.  相似文献   

2.
We report the characterization of the yeast Npa2p (Urb2p) protein, which is essential for 60S ribosomal subunit biogenesis. We identified this protein in a synthetic lethal screening with the rsa3 null allele. Rsa3p is a genetic partner of the putative RNA helicase Dbp6p. Mutation or depletion of Npa2p leads to a net deficit in 60S subunits and a decrease in the levels all 27S pre-rRNAs and mature 25S and 5.8S rRNAs. This is likely due to instability of early pre-60S particles. Consistent with a role of Npa2p in 60S subunit biogenesis, green fluorescent protein-tagged Npa2p localizes predominantly to the nucleolus and TAP-tagged Npa2p sediments with large complexes in sucrose gradients and is associated mainly with 27SA(2) pre-rRNA-containing preribosomal particles. In addition, we reveal a genetic synthetic interaction between Npa2p, several factors required for early steps of 60S subunit biogenesis (Dbp6p, Dbp7p, Dbp9p, Npa1p, Nop8p, and Rsa3p), and the 60S protein Rpl3p. Furthermore, coimmunoprecipitation and gel filtration analyses demonstrated that at least Npa2p, Dbp6p, Npa1p, Nop8p, and Rsa3p are present together in a subcomplex of low molecular mass whose integrity is independent of RNA. Our results support the idea that these five factors work in concert during the early steps of 60S subunit biogenesis.  相似文献   

3.
Ribosome biogenesis requires >100 nonribosomal proteins, which are associated with different preribosomal particles. The substrates, the interacting partners, and the timing of action of most of these proteins are largely unknown. To elucidate the functional environment of the putative ATP-dependent RNA helicase Dbp6p from Saccharomyces cerevisiae, which is required for 60S ribosomal subunit assembly, we have previously performed a synthetic lethal screen and thereby revealed a genetic interaction network between Dbp6p, Rpl3p, Nop8p, and the novel Rsa3p. In this report, we extended the characterization of this functional network by performing a synthetic lethal screen with the rsa3 null allele. This screen identified the so far uncharacterized Npa1p (YKL014C). Polysome profile analysis indicates that there is a deficit of 60S ribosomal subunits and an accumulation of halfmer polysomes in the slowly growing npa1-1 mutant. Northern blotting and primer extension analysis shows that the npa1-1 mutation negatively affects processing of all 27S pre-rRNAs and the normal accumulation of both mature 25S and 5.8S rRNAs. In addition, 27SA(2) pre-rRNA is prematurely cleaved at site C(2). Moreover, GFP-tagged Npa1p localizes predominantly to the nucleolus and sediments with large complexes in sucrose gradients, which most likely correspond to pre-60S ribosomal particles. We conclude that Npa1p is required for ribosome biogenesis and operates in the same functional environment of Rsa3p and Dbp6p during early maturation of 60S ribosomal subunits.  相似文献   

4.
Ribosome synthesis is a highly complex process and constitutes a major cellular activity. The biogenesis of this ribonucleoprotein assembly requires a multitude of protein trans-acting factors including several putative ATP-dependent RNA helicases of the DEAD-box and related protein families. Here we show that the previously uncharacterized Saccharomyces cerevisiae open reading frame YLR276C, hereafter named DBP9 (DEAD-box protein 9), encodes an essential nucleolar protein involved in 60S-ribosomal-subunit biogenesis. Genetic depletion of Dbp9p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This terminal phenotype is likely due to the instability of early pre-ribosomal particles, as evidenced by the low steady-state levels and the decreased synthesis of the 27S precursors to mature 25S and 5.8S rRNAs. In agreement with a role of Dbp9p in 60S subunit synthesis, we find that increased Dbp9p dosage efficiently suppresses certain dbp6 alleles and that dbp6/dbp9 double mutants show synthetic lethality. Furthermore, Dbp6p and Dbp9p weakly interact in a yeast two-hybrid assay. Altogether, our findings indicate an intimate functional interaction between Dbp6p and Dbp9p during the process of 60S-ribosomal-subunit assembly.  相似文献   

5.
DEXD/H box putative RNA helicases are required for pre-rRNA processing in Saccharomyces cerevisiae, although their exact roles and substrates are unknown. To characterize the significance of the conserved motifs for helicase function, a series of five mutations were created in each of the eight essential RNA helicases (Has1, Dbp6, Dbp10, Mak5, Mtr4, Drs1, Spb4, and Dbp9) involved in 60S ribosomal subunit biogenesis. Each mutant helicase was screened for the ability to confer dominant negative growth defects and for functional complementation. Different mutations showed different degrees of growth inhibition among the helicases, suggesting that the conserved regions do not function identically in vivo. Mutations in motif I and motif II (the DEXD/H box) often conferred dominant negative growth defects, indicating that these mutations do not interfere with substrate binding. In addition, mutations in the putative unwinding domains (motif III) demonstrated that conserved amino acids are often not essential for function. Northern analysis of steady-state RNA from strains expressing mutant helicases showed that the dominant negative mutations also altered pre-rRNA processing. Coimmunoprecipitation experiments indicated that some RNA helicases associated with each other. In addition, we found that yeasts disrupted in expression of the two nonessential RNA helicases, Dbp3 and Dbp7, grew worse than when either one alone was disrupted.  相似文献   

6.
In Saccharomyces cerevisiae, ribosomal biogenesis takes place primarily in the nucleolus, in which a single 35S precursor rRNA (pre-rRNA) is first transcribed and sequentially processed into 25S, 5.8S, and 18S mature rRNAs, leading to the formation of the 40S and 60S ribosomal subunits. Although many components involved in this process have been identified, our understanding of this important cellular process remains limited. Here we report that one of the evolutionarily conserved DEAD-box protein genes in yeast, DBP3, is required for optimal ribosomal biogenesis. DBP3 encodes a putative RNA helicase, Dbp3p, of 523 amino acids in length, which bears a highly charged amino terminus consisting of 10 tandem lysine-lysine-X repeats ([KKX] repeats). Disruption of DBP3 is not lethal but yields a slow-growth phenotype. This genetic depletion of Dbp3p results in a deficiency of 60S ribosomal subunits and a delayed synthesis of the mature 25S rRNA, which is caused by a prominent kinetic delay in pre-rRNA processing at site A3 and to a lesser extent at sites A2 and A0. These data suggest that Dbp3p may directly or indirectly facilitate RNase MRP cleavage at site A3. The direct involvement of Dbp3p in ribosomal biogenesis is supported by the finding that Dbp3p is localized predominantly in the nucleolus. In addition, we show that the [KKX] repeats are dispensable for Dbp3p's function in ribosomal biogenesis but are required for its proper localization. The [KKX] repeats thus represent a novel signaling motif for nuclear localization and/or retention.  相似文献   

7.
Putative ATP-dependent RNA helicases are ubiquitous, highly conserved proteins that are found in most organisms and they are implicated in all aspects of cellular RNA metabolism. Here we present the functional characterization of the Dbp7 protein, a putative ATP-dependent RNA helicase of the DEAD-box protein family from Saccharomyces cerevisiae. The complete deletion of the DBP7 ORF causes a severe slow-growth phenotype. In addition, the absence of Dbp7p results in a reduced amount of 60S ribosomal subunits and an accumulation of halfmer polysomes. Subsequent analysis of pre-rRNA processing indicates that this 60S ribosomal subunit deficit is due to a strong decrease in the production of 27S and 7S precursor rRNAs, which leads to reduced levels of the mature 25S and 5.8S rRNAs. Noticeably, the overall decrease of the 27S pre-rRNA species is neither associated with the accumulation of preceding precursors nor with the emergence of abnormal processing intermediates, suggesting that these 27S pre-rRNA species are degraded rapidly in the absence of Dbp7p. Finally, an HA epitope-tagged Dbp7 protein is localized in the nucleolus. We propose that Dbp7p is involved in the assembly of the pre-ribosomal particle during the biogenesis of the 60S ribosomal subunit.  相似文献   

8.
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein 10) encodes an essential putative RNA helicase that is required for accurate ribosome biogenesis. Genetic depletion of Dbp10p results in a deficit in 60S ribosomal subunits and an accumulation of half-mer polysomes. Furthermore, pulse-chase analyses of pre-rRNA processing reveal a strong delay in the maturation of 27SB pre-rRNA intermediates into 25S rRNA and 7S pre-rRNA. Northern blot analyses indicate that this delay leads to higher steady-state levels of 27SB species and reduced steady-state levels of 7S pre-rRNA and 25S/5.8S mature rRNAs, thus explaining the final deficit in 60S subunit and the formation of half-mer polysomes. Consistent with a direct role in ribosome biogenesis, Dbp10p was found to be located predominantly in the nucleolus.  相似文献   

9.
10.
A previously uncharacterized Saccharomyces cerevisiae open reading frame, YNR038W, was analyzed in the context of the European Functional Analysis Network. YNR038W encodes a putative ATP-dependent RNA helicase of the DEAD-box protein family and was therefore named DBP6 (DEAD-box protein 6). Dbp6p is essential for cell viability. In vivo depletion of Dbp6p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase labeling of pre-rRNA and steady-state analysis of pre-rRNA and mature rRNA by Northern hybridization and primer extension show that Dbp6p depletion leads to decreased production of the 27S and 7S precursors, resulting in a depletion of the mature 25S and 5.8S rRNAs. Furthermore, hemagglutinin epitope-tagged Dbp6p is detected exclusively within the nucleolus. We propose that Dbp6p is required for the proper assembly of preribosomal particles during the biogenesis of 60S ribosomal subunits, probably by acting as an rRNA helicase.  相似文献   

11.
RNA helicases of the DEAD box family are involved in almost all cellular processes involving RNA molecules. Here we describe functional characterization of the yeast RNA helicase Dbp8p (YHR169w). Our results show that Dbp8p is an essential nucleolar protein required for biogenesis of the small ribosomal subunit. In vivo depletion of Dbp8p resulted in a ribosomal subunit imbalance due to a deficit in 40S ribosomal subunits. Subsequent analyses of pre-rRNA processing by pulse–chase labeling, northern hybridization and primer extension revealed that the early steps of cleavage of the 35S precursor at sites A1 and A2 are inhibited and delayed at site A0. Synthesis of 18S rRNA, the RNA moiety of the 40S subunit, is thereby blocked in the absence of Dbp8p. The involvement of Dbp8p as a bona fide RNA helicase in ribosome biogenesis is strongly supported by the loss of Dbp8p in vivo function obtained by site-directed mutagenesis of some conserved motifs carrying the enzymatic properties of the protein family.  相似文献   

12.
The yeast Dbp9p is a member of the DEAD box family of RNA helicases, which are thought to be involved in RNA metabolism. Dbp9p seems to function in ribosomal RNA biogenesis, but it has not been biochemically characterized. To analyze the enzymatic characteristics of the protein, we expressed a recombinant Dbp9p in Escherichia coli and purified it to homogeneity. The purified protein exhibited RNA unwinding and binding activity in the absence of NTP, and this activity was abolished by a mutation in the RNA-binding domain. We then characterized the ATPase activity of Dbp9p with respect to cofactor specificity; the activity was found to be severely inhibited by yeast total RNA and moderately inhibited by poly(U), poly(A), and poly(C) but to be stimulated by yeast genomic DNA and salmon sperm DNA. In addition, Dbp9p exhibited DNA-DNA and DNA-RNA helicase activity in the presence of ATP. These results indicate that Dbp9p has biochemical characteristics unique among DEAD box proteins.  相似文献   

13.
Lund MK  Guthrie C 《Molecular cell》2005,20(4):645-651
Eukaryotic mRNAs are exported from the nucleus to the cytoplasm as complex mRNA-protein particles (mRNPs), and translocation through the nuclear pore complex (NPC) is accompanied by extensive structural changes of the mRNP. We have tested the hypothesis that the DEAD-box ATPase Dbp5p is required for such an mRNP rearrangement. In dbp5 mutant cells, the mRNA export receptor Mex67p accumulates on mRNA. This aberrant accumulation of Mex67p with RNA and the cold-sensitive growth phenotype of a dbp5 allele are suppressed by a mex67 mutation. Moreover, Mex67 bound mRNA accumulates at the nuclear rim in a temperature-sensitive dbp5 mutant when the nuclear exosome is impaired. Importantly, although accumulation of Mex67p-containing mRNPs is also observed when a nuclear basket component is mutated, these mRNPs still contain the nuclear export factor Yra1p. In contrast, the dbp5-trapped mRNPs lack Yra1p. We propose that Dbp5p's function is specifically required to displace Mex67p from exported mRNPs, thus terminating export.  相似文献   

14.
The Has1 protein, a member of the DEAD-box family of ATP-dependent RNA helicases in Saccharomyces cerevisiae, has been found by different proteomic approaches to be associated with 90S and several pre-60S ribosomal complexes. Here, we show that Has1p is an essential trans-acting factor involved in 40S ribosomal subunit biogenesis. Polysome analyses of strains genetically depleted of Has1p or carrying a temperature-sensitive has1-1 mutation show a clear deficit in 40S ribosomal subunits. Analyses of pre-rRNA processing by pulse-chase labelling, Northern hybridization and primer extension indicate that these strains form less 18S rRNA because of inhibition of processing of the 35S pre-rRNA at the early cleavage sites A0, A1 and A2. Moreover, processing of the 27SA3 and 27SB pre-rRNAs is delayed in these strains. Therefore, in addition to its role in the biogenesis of 40S ribosomal subunits, Has1p is required for the optimal synthesis of 60S ribosomal subunits. Consistent with a role in ribosome biogenesis, Has1p is localized to the nucleolus. On sucrose gradients, Has1p is associated with a high-molecular-weight complex sedimenting at positions equivalent to 60S and pre-60S ribosomal particles. A mutation in the ATP-binding motif of Has1p does not support growth of a has1 null strain, suggesting that the enzymatic activity of Has1p is required in ribosome biogenesis. Finally, sequence comparisons suggest that Has1p homologues exist in all eukaryotes, and we show that a has1 null strain can be fully complemented by the Candida albicans homologue.  相似文献   

15.
16.
RNA helicases are adenosine tri-phosphatases that unwind the secondary structures of RNAs and are required in almost any aspect of RNA metabolism. They are highly conserved from prokaryotic to eukaryotic organisms. However, their precise roles in plant physiology and development remain to be clarified. Here we report that the mutation in the gene SLOW WALKER3 {SWA3) results in the slow and retarded progression of mitosis during megagametogenesis in Arabidopsis. SWA3 is a putative RNA helicase of the DEAD-box subfamily. Mutant megagametophyte development is arrested at four-or eight-nucleate stages, furthermore, one of the synergids in about half of the mutant embryo sacs displays abnormal polarity, with its nucleus locating at the chalazal end, instead of the micropylar end in the wild-type. Transmission of the mutation through female gametophytes is severely reduced in swa3. However, a small portion of mutant embryo sacs are able to develop into mature and functional female gametophytes when pollination was postponed. The SWA3 in Arabidopsis is a homolog of Dbp8 in yeast. Dbp8 interacts with Efs2 and is essential for biogenesis of 18S rRNA in yeast. Our data suggest that SWA3 may form a complex with AtEfs2 and take roles in ribosomal biogenesis as RNA helicase during megagametogenesis in Arabidopsis.  相似文献   

17.
Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directly to the C-terminal part of Zds1p. In addition, ZDS1 interacted genetically with mutant alleles of genes encoding key factors in mRNA export, including DBP5 and MEX67. Furthermore, deletion of ZDS1 or of both ZDS1 and the closely related ZDS2 exacerbated the poly(A)+ export defects shown by dbp5-2 and mex67-5 mutants. We proposed that Zds1p associates with the complex formed by Dbp5p, Gfd1p, and nucleoporins at the cytosolic fibrils of the nuclear pore complex and is required for optimal mRNA export.  相似文献   

18.
The 3' poly(A) structure improves translation of a eukaryotic mRNA by 50-fold in vivo. This enhancement has been suggested to be due to an interaction of the poly(A) binding protein, Pab1p, with eukaryotic translation initiation factor 4G (eIF4G). However, we find that mutation of eIF4G eliminating its interaction with Pab1p does not diminish the preference for poly(A)(+) mRNA in vivo, indicating another role for poly(A). We show that either the absence of Fun12p (eIF5B), or a defect in eIF5, proteins involved in 60S ribosomal subunit joining, specifically reduces the translation of poly(A)(+) mRNA, suggesting that poly(A) may have a role in promoting the joining step. Deletion of two nonessential putative RNA helicases (genes SKI2 and SLH1) makes poly(A) dispensable for translation. However, in the absence of Fun12p, eliminating Ski2p and Slh1p shows little enhancement of expression of non-poly(A) mRNA. This suggests that Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecting 60S subunit joining.  相似文献   

19.
Rrs1p, a ribosomal protein L11-binding protein, has an essential role in biogenesis of 60S ribosomal subunits. We obtained conditionally synthetic lethal allele with the rrs1-5 mutation and determined that the mutation is in REX1, which encodes an exonuclease. The highly conserved leucine at 305 was substituted with tryptophan in rex1-1. The rex1-1 allele resulted in 3′-extended 5S rRNA. Polysome analysis revealed that rex1-1 and rrs1-5 caused a synergistic defect in the assembly of 60S ribosomal subunits. In vivo and in vitro binding assays indicate that Rrs1p interacts with the ribosomal protein L5–5S rRNA complex. The rrs1-5 mutation weakens the interaction between Rrs1p with both L5 and L11. These data suggest that the assembly of L5–5S rRNA on 60S ribosomal subunits coordinates with assembly of L11 via Rrs1p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号