首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.4 and 6 mg/kg thiophosphamide (T) was administered intravenously to New Zealand rabbits. A decrease in sister chromatid exchange (SCE) and chromosome aberration (CA) rate began immediately after the mutagenic action of T was over. The expected SCE rate was more than the investigated one. The difference between expected and investigated SCE rate increased with the dose of T. A calculation of SCE was based on the amount of the administered T, the rate of T removal and cell sensitivity to T. The death of cells with high number of SCE resulted in a fast decrease in SCE rate in the first 4 days. Reparative processes and cell proliferation in lymphocyte tissue resulted in a slow decrease in SCE rate after the 4th day. A number of nuclear cells in the blood was the smallest on the 4 th day, at the same time relative increase in CA rate was observed. The time of sampling and the dose of the substance tested should be taken into account for a more accurate estimation of mutagenic activity of some chemicals in in vivo cytogenetic tests.  相似文献   

2.
Following acute and chronic exposures to various chemicals in vivo, the average SCE frequency in human and rabbit lymphocytes has generally been shown to decrease with time posttreatment. The rate of this decline varies, however, and little data have been published pertaining to the decrease in SCEs soon exposure. To gain more information about the immediate decline in SCEs with time, we injected rabbits with a single dose of 35 mg/kg cyclophosphamide (CP) and determined SCE levels in circulating lymphocytes at various times 5 h to 2 weeks after treatment. We observed a rapid decline in SCE frequencies within 5 days, and by 10 days post-exposure the SCE levels were back to control values. The distributions of SCEs among cells and the number of circulating lymphocytes were also analyzed at each time. Within 2–3 days posttreatment we observed a rapid loss of cells with high SCE levels concomitantly with a rapid decline in circulating lymphocytes and a decrease in the average SCE frequency. When the number of lymphocytes began to increase, the number of cells with normal SCE values also increased. By 10–11 days after CP, the lymphocyte count had recovered, the SCE frequency had returned to control levels, and the distribution of SCEs among cells was almost identical to the control distribution. These data, in addition to published information on rabbit lymphocyte lifespan, suggest that the decline in SCE levels with time posttreatment is a function of lymphocyte turnover.  相似文献   

3.
The roles of DNA crosslink and its repair in the induction of sister-chromatid exchanges (SCEs) were studied in normal, xeroderma pigmentosum (XP) complementation group A, and Fanconi's anemia (FA) fibroblasts after treatment with mitomycin C (MC) or decarbamoyl mitomycin C (DMC) for 1 h. FA strains were 5—30-fold more sensitive to MC killing than normal cells, but normally responded to DMC killing. XP group-A cells were twice and only slightly more sensitive to DMC and MC killings, respectively, than normal cells. The induction rate of immediate SCEs by MC was 1.7 times higher, despite a normal SCE rate by DMC, in FA strains than that in normal cells. Alternatively, SCE rates by DMC and MC were 6 times and only 1.3 times higher, respectively, in XP cells than in normal cells. In normal cells, the reduction of MC-induced SCEs as a function of repair time followed a biphasic curve of the first rapid (half-life, 2 h) and the second slow (half-life, 14 h) components. Such components corresponded exactly to the first half-excision and the second slow repair processes of molecular crosslink repair. In MC-induced SCEs, FA17JTO cells exhibited only the slow reduction component without the first rapid component and a higher saturation level in the time-dependent reduction in SCEs. This indicates that SCEs are produced by crosslinks remaining unrepaired for long times (24—48 h) after treatment of FA cells. Conversely, XP group-A cells capable of the first half-excision manifested the first rapid reduction in SCEs, although the second component declined at the slowest rate (half-life, 48 h) owing to a defect in the second mono-adduct repair. The reduction in DMC-induced SCEs followed only the slow component. Thus, these results demonstrate that crosslink can be the lesion leading to SCE, and the MC-induced SCE frequency is higher in FA cells than in normal cells. In the FA20JTO strain, such a repair defect seemed to be less than in FA17JTO cells, judged from the survival and SCE characteristics.  相似文献   

4.
The genotoxic effects of cyclophosphamide (CPP), a human and animal carcinogen requiring metabolic activation, were studied in bone marrow cells of mice and Chinese hamsters, analyzing chromosome abnormalities (CA) and sister-chromatid exchange (SCE) after a 2-h inhalation or a single intraperitoneal administration. In order to compare the genotoxicity after the different routes of administration in the dose range of 10-110 mg CPP/kg body weight, the systemic dose obtained by inhalation was calculated from blood concentrations and the inhalation duration after an analysis of the CPP blood kinetics. In NMRI mice the frequency of bone marrow cells with chromosome abnormalities was higher after aerosol exposure than after intraperitoneal administration of comparable CPP doses. In Chinese hamsters the CA frequency was similar with both exposure routes. Inhaled CPP was found to induce a higher frequency of CA and SCE in the bone marrow cells of mice compared to those of Chinese hamsters. The findings suggest that for genotoxins requiring metabolic activation species differences exist with respect to the influence of the route of entry and the sensitivity of bone marrow cells.  相似文献   

5.
We measured the longitudinal responses to 95 HLA class I-restricted human immunodeficiency virus (HIV) epitopes and an immunodominant HLA A2-restricted cytomegalovirus (CMV) epitope in eight treatment-naive HIV-infected individuals, using intracellular cytokine staining. Patients were treated with highly active antiretroviral therapy (HAART) for a median of 78 weeks (range, 34 to 121 weeks). Seven of eight patients maintained an undetectable viral load for the duration of therapy. A rapid decline in HIV-specific CD8(+) T-cell response was observed at initiation of therapy. After an undetectable viral load was achieved, a slower decrease in HIV-specific CD8(+) T-cell response was observed that was well described by first-order kinetics. The median half-life for the rate of decay was 38.8 (20.3 to 68.0) weeks when data were expressed as percentage of peripheral CD8(+) T cells. In most cases, data were similar when expressed as the number of responding CD8(+) T cells per microliter of blood. In subjects who responded to more than one HIV epitope, rates of decline in response to the different epitopes were similar and varied by a factor of 2.2 or less. Discontinuation of treatment resulted in a rapid increase in HIV-specific CD8(+) T cells. Responses to CMV increased 1.6- and 2.8-fold within 16 weeks of initiation of HAART in two of three patients with a measurable CMV response. These data suggest that HAART quickly starts to restore CD8(+) T-cell responses to other chronic viral infections and leads to a slow decrease in HIV-specific CD8(+) T-cell response in HIV-infected patients. The slow decrease in the rate of CD8(+) T-cell response and rapid increase in response to recurrent viral replication suggest that the decrease in CD8(+) T-cell response observed represents a normal memory response to withdrawal of antigen.  相似文献   

6.
The effects of temperature on sister-chromatid exchange (SCE) frequency in Rat-1 embryo fibroblasts was investigated by culturing cells at 35 degrees C and 39 degrees C. Cells routinely cultured at 35 degrees C had a significantly lower SCE rate (0.1903 SCE/chromosome) than those routinely cultured at 39 degrees C (2.657 SCE/chromosome). When cells routinely cultured at 35 degrees C were transferred to 39 degrees C, their SCE rate increased to that of the 39 degrees C cells. However, 39 degrees C cells transferred to 35 degrees C did not show a decrease after 24 h acclimatization but after 48 h acclimatization their SCE rate had dropped to that of the 35 degrees C cells. Cells cultured at 35 degrees C had a longer cell cycle time than cells cultured at 39 degrees C, indicating that in Rat-1 cells increased cell cycle time does not result in increased SCE.  相似文献   

7.
Summary The effect of incubation temperature on the frequency of sister chromatid exchange (SCE) has been studied in blood cultures from three Bloom's syndrome (BS) patients, three controls, and three BS heterozygotes. All cell types show slight increases of SCE at 39°C while at 35°C and 32°C, SCE is reduced considerably in BS and slightly increased in normal cells. Prolonging lymphocyte culture to 140 h and adding BUdR for the last two S periods causes a similar decrease in the percentage of SCE in normal and BS cells but, while the latter show a further reduction if they are incubated at 32°C during BUdR labelling, the normal cells show an increase. Therefore, BS and control lymphocytes respond similarly to changes in incubation time and differently to changes in incubation temperature. The possibility that the discrepant behaviour of the BS and control cultures may be due to different growth kinetics of their B and T lymphocytes has been discussed but considered unlikely. Since low temperature lengthens the cell cycle, it has been suggested that our findings and those published by others on co-cultivation experiments (except those of Tice et al. 1978) can be explained by assuming that slow growth reduces SCE in BS cells. This, and unpublished observations (Giannelli et al. 1981), suggest that some imbalance in the factors responsible for DNA replication may exist in BS and possibly account for the high level of SCE.  相似文献   

8.
Hypersensitivity of Bloom's syndrome fibroblasts to N-ethyl-N-nitrosourea   总被引:5,自引:0,他引:5  
Fibroblast cells from two Japanese patients with Bloom's syndrome (BS) and normal donors were studied for the inactivation of colony-forming ability and the induction of sister-chromatid exchanges (SCEs) after N-ethyl-N-nitrosourea (ENU) treatment. The reduction of ENU-induced SCEs as a function of post-treatment incubation time was also compared between BS and normal fibroblasts. BS cells were approximately 4 times more sensitive than normal cells to the lethal effect of ENU and remarkably hypersensitive to the SCE induction by ENU. The post-treatment incubation of ENU-treated normal cells in the fresh medium resulted in a time-dependent decrease of the SCE level until 6 h after which time the SCE level remained the plateau of about 50% of the initial level. In contrast, the ENU-induced SCEs in BS cells decreased much more slowly with post-treatment incubation time and its half life was 24 h. These results collectively support the view that BS cells may be defective in the rapid repair of certain type(s) of DNA damages induced by ENU.  相似文献   

9.
C Cerni 《In vitro》1984,20(4):305-313
The frequency of sister chromatid exchange (SCE) was determined in a nontransformed diploid rat cell line, FR3T3 , under several tissue culture variables such as cultivation temperature, growth conditions of cells, and concentrations of 5-bromo-2'-deoxyuridine (BrdU). The conclusions to be drawn from these experiments are: (a) The cell growth and mechanisms(s) of SCE formation in FR3T3 cells are largely temperature independent (or efficiently regulated) in the range between 33 and 40.5 degrees C. (b) The concentration limits for BrdU incorporation are 5 to 100 microM; baseline frequency is about 11 SCE/metaphase (constant up to 20 microM BrdU) and increases only moderately at higher BrdU concentrations. (c) Toxic levels of BrdU (150 microM) cause a decrease of SCE rates below that found at 100 microM, presumably due to selective cell death. (d) Keeping cells growth arrested over a long period causes substantial SCE induction after replating. (e) Induced increase of SCEs probably occurs in this manner during the first cell cycle after release from growth arrest. It is no longer detectable after the fourth consecutive cell division.  相似文献   

10.
Sister-chromatid exchange (SCE) frequencies were determined in human peripheral blood CD4+ and CD8+ T lymphocyte subpopulations which were rapidly and highly purified from pooled T lymphocytes by immunological methods. The purified lymphocytes were stimulated with phytohemagglutinin (PHA) for 4 days. CD4+ lymphocytes showed significantly higher SCE frequencies than autologous CD8+ lymphocytes when measured simultaneously after identical bromodeoxyuridine (BrdU) incubation times. Differences in SCE frequencies between CD4+ and CD8+ lymphocytes were also detected when mitomycin C (MMC) was added to the cultures. Higher SCE frequencies in CD4+ lymphocytes were associated with lower proliferating rate indices (PRI) as compared to autologous CD8+ lymphocytes. Abnormalities in CD4+ T lymphocyte function and number in peripheral blood have been observed in several diseases characterized by immunological disorders. Thus, our data may suggest a link between some immunological disturbances and abnormal SCE frequencies in T lymphocyte subsets.  相似文献   

11.
Bloom syndrome (BS) lymphocytes, which are characterized by a high incidence (75.4 per cell) of SCE, were treated with caffeine (CAF) during the first cell cycle and with monofunctional-(M-MC) and bifunctional-(MC)mitomycin C during the second cycle. The effect on the SCE level was synergistic. The CAF-pretreated cells in combination with M-MC and MC post-treatments, had significantly higher (SCE values 152.5 and 167.9 SCE per cell, resp.) than those treated with M-MC or MC alone during the second cycle (101.1 and 116.4 SCE per cell, resp.). M-MC and MC in the presence of BrdU (without CAF) for 2 cell cycles increased SCE to 157.6 and 169.4 per cell (about twice the control level). M-MC + CAF and MC + CAF treatments for 2 cell cycles did not produce a synergistic effect on the SCE frequency in BS cells; the SCE level was not significantly greater than that with M-MC or MC alone. Normal cells treated with MC and CAF for 2 cycles had a maximum SCE frequency of 156 per cell. This suggests that cells with SCE frequencies above this level may not be able to survive, i.e., this is the “saturation” level of SCE. However, CAF alone had almost no effect on SCE in either BS or normal cells and did not produce multiple chromosome aberrations. The lack of CAF effect on BS cells suggests that the lesions in DNA strands of BS cells which lead to SCE are double-strand lesions. In normal cells CAF is known to significantly slow down DNA-chain growth; the reduced rate of DNA-chain growth in BS is an inherent defect of the cells. Therefore, though CAF enhanced SCE and chromosome aberrations (shattered chromosomes) in combination with alkylating agents, CAF alone did not significantly increase the SCE rate in either BS cells or in normal cells. Thus, processes which may induce SCE are not only related to retarded rate of DNA-chain growth, but also to breaks in the template strand permitting double-strand exchanges to occur.  相似文献   

12.
The present study was undertaken to examine cell cycle progression and SCE rate in three types of B-lymphoid cell line, viz., normal (KS-86), high-SCE Bloom syndrome (BS (BS2-2) and dimorphic BS (BS-SYW). In order to compare the dimorphic condition (BS-SYW) with artificial dimorphism (co-cultivation of BS2-2 with KS-86) these experiments were designed to test whether the BS B-lymphoid cell line cultures would influence the cell cycle progression and SCE rates of a normal B-lymphoid cell line, and vice versa. The present study resolved the controversy reported in the literature, by finding a definite time period under co-cultivation conditions when the SCE in normal cells was increased after 8 days of co-culture, whereas SCE in the BS cells decreased immediately with co-cultivation. In the dimorphic BS cell line (BS-SYW) the SCE frequency of a high-SCE cell population was also observed to be lower than that of a non-dimorphic BS cell line (BS2-2), thus corroborating the experimental observations under co-cultivation conditions. The decrease in BS SCE and increase in normal SCE (after a particular time period) is attributed to numerous causes discussed in relation to the cell cycle progression.  相似文献   

13.
We measured SCE frequencies over a period of 8 months in 14 smokers who stopped smoking at the start of the study. In a first group of 10 subjects, who did not resume smoking during the period of cytogenetic follow-up, a lowering of SCE frequencies was already evident after 18 days and this became statistically significant after 78 days. SCE decrease was related to the logarithm of the period (in days) for which smoking was interrupted (r = 0.98; p less than 0.001). In a second group of 4 subjects, who at various times resumed smoking, the decrease of SCE followed the same pattern as in the first group during the period of nonsmoking, but SCE frequencies rose even higher once smoking was resumed. Our study indicates that the decrease of SCE in ex-smokers is rather rapid during the first 78 days after stopping smoking, and much slower from the 78th to the 233rd day.  相似文献   

14.
Summary The frequency of sister chromatid exchange (SCE) was determined in a nontransformed diploid rat cell line, FR3T3, under several tissue culture variables such as cultivation temperature, growth conditions of cells, and concentrations of 5-bromo-2′-deoxyuridine (BrdU). The conclusions to be drawn from these experiments are: (a) The cell growth and mechanism(s) of SCE formation in FR3T3 cells are largely temperature independent (or efficiently regulated) in the range between 33 and 40.5°C. (b) The concentration limits for BrdU incorporation are 5 to 100 μM; baseline frequency is about 11 SCE/metaphase (constant up to 20 μM BrdU) and increases only moderately at higher BrdU concentrations. (c) Toxic levels of BrdU (150 μM) cause a decrease of SCE rates below that found at 100 μM, presumably due to selective cell death. (d) Keeping cells growth arrested over a long period causes substantial SCE induction after replating. (e) Induced increase of SCEs probably occurs in this manner during the first cell cycle after release from growth arrest. It is no longer detectable after the fourth consecutive cell division. This work was supported by a grant from the Medizinisch-wissenschaftlicher Fond des Bürgermeisters der Bundeshauptstadt Wien.  相似文献   

15.
A total of 12 patients with cancer or the acquired immunodeficiency syndrome have been treated with Jurkat-derived purified human interleukin 2 (IL 2). The toxicity was dose-related and consisted primarily of fever, chills, malaise, and mild reversible hepatic dysfunction. No evidence of clinical efficacy was seen when IL 2 was administered at doses of up to 2000 micrograms by bolus or continuous infusion once a week for 4 wk. No significant chronic immunologic effects (changes in mitogen responsiveness of induction of cytotoxic cells) were demonstrated. IL 2 was measured in the serum of patients, and a half-life of approximately 5 to 7 min was demonstrated with a second component of clearance of 30 to 120 min. Heating the serum at 56 degrees C for 30 min allowed for detection of smaller quantities of IL 2 by removing a serum inhibitor whose effect was seen at dilutions of up to 1/80 in our biologic assay. Sustained levels of IL 2 could be maintained by continuous infusion. Acute effects of IL 2 administration included a rapid decrease in peripheral mononuclear cells with a shift to cells of macrophage lineage and a rapid decrease in total T lymphocytes and T lymphocyte subsets. IL 2 responsiveness of peripheral mononuclear cells decreased within 15 min of IL 2 administration, with a concurrent decrease in the ability to generate lymphokine-activated killer cells. These changes did not recover until 48 hr after IL 2 administration. A rise in serum ACTH and cortisol levels was seen after the administration of 1 to 2 mg of IL 2. Future studies will evaluate the role of larger quantities of recombinant IL 2 given alone or in conjunction with in vitro-generated lymphokine-activated killer cells.  相似文献   

16.
Summary Different activation states of B and T lymphocytes, as manifested by differences in cell density, were obtained by Percoll density centrifugation of unstimulated human lymphocytes. Four different density fractions were defined: B cells with low (1.043 g/ml) and high (1.056) density, and T cells with low (1.067) and high (1.077) density, respectively. Sister chromatid exchange (SCE) conditions and proliferation rates were determined. Total B cells, stimulated by the bacterial mitogen Branhamella, had 4.6 SCE per cell, the lowest mean baseline SCE level recorded among lymphocytes. The growth rate was intermediate between that of low and high density T cells. The two T cell fractions stimulated by phytohemagglutinin (PHA) had different baseline SCE frequencies and different growth characteristics: the low density cells had 5.7 SCEs per cell and a short cell cycle, whereas high density cells had 12.5 SCEs per cell and a longer cell cycle. The differences in baseline SCE frequency and growth characteristics between the two T cell fractions seem to be correlated with the differences in the activation state as reflected by the cell density. Both high and low density T cell are G0 populations which supposedly differ with respect to previous history in vivo such as age and contact with antigens. The reason why these cells react differently to bromodeoxyuridine (BrdU) is unknown, but differences in intracellular DNA precursor pools and enzyme activities might play a role.  相似文献   

17.
A sugar cane extract (SCE) has been found to have an immunostimulating effect in several animals. Lipopolysaccharide (LPS) is known to induce endotoxin shock via the production of inflammatory modulators such as tumor necrosis factor (TNF)-alpha and nitric oxide (NO). We examined in the present study the effects of SCE on the TNF-alpha and NO production in LPS-stimulated mice peritoneal cells and the endotoxin shock in mice. The supplementation of SCE to peritoneal macrophages cultured with LPS resulted in a significant decrease in NO production. All the mice injected intraperitoneally with LPS and D-galactosamine (LPS+GalN) died within 24 h. However, a peritoneal injection, but no intravenous or oral administration, of SCE (500-1,000 mg/kg) at 3 to 48 h before the LPS+GalN-challenge resulted in a significantly improved survival rate. These results suggest that SCE had a protective effect on LPS-induced endotoxin shock via one of possible mechanisms involving the suppression of NO production in the mouse peritoneal cavity.  相似文献   

18.
The effect of cell fusion and deoxynucleosides (deoxyadenosine, dA; deoxyguanosine, dG; deoxycytidine, dC; thymidine, T) on sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) was studied in two types of BrdU (bromodeoxyuridine)-sensitive and BrdU-resistant B-lymphoblastoid cell lines (LCLs) with respect to cellular proliferation in BrdU-labeled culture conditions. Cell fusion between BrdU-sensitive and BrdU-resistant BS B-LCLs did not exhibit complementation, although when any of the BS B-LCLs (retaining high SCE character) labeled with BrdU were fused with non-labeled normal cells, the hybrid cells had a normal level of SCE at the first mitosis after fusion. Deoxycytidine addition showed no effect on SCEs in normal cells but decreased SCEs in BS cells from the baseline level of 70 SCEs/cell to about 60 SCE/cell. Purine deoxyribonucleosides (dG and dA) caused a significant concentration-dependent increase in SCE frequency both in normal and BS cells. Although T caused a 2-fold increase in normal SCEs, it highly decreased BS SCE from 70 SCEs/cell to 35 SCEs/cell. FrdU did not greatly affect BS SCE in the presence of BrdU and T. These observations indicate strongly that BS cells may have a low thymidine pool compared with normal cells, which could account for a more efficient BrdU substitution in the DNA thus potentiating the template effect on SCE.  相似文献   

19.
Sister-chromatid exchange (SCE) frequencies were determined in human peripheral blood CD4+ and CD8+ T lymphocyte subpopulations which were rapidly and highly purified from pooled T lymphocytes by immunological methods. The purified lymphocytes were stimulated with phytohemagglutinin (PHA) for 4 days. CD4+ lymphocytes showed significantly higher SCE frequencies than autologous CD8+ lymphocytes when measured simultaneously after identical bromodeoxyuridine (BrdU) incubation times. Differences in SCE frequencies between CD4+ and CD8+ lymphocytes were also detected when mitomycin C (MMC) was added to the cultures. Higher SCE frequencies in CD4+ lymphocytes were associated with lower proliferating rate indices (PRI) as compared to autologous CD8+ lymphocytes. Abnormalities in CD4+ T lymphocyte function and number in peripheral blood have been observed in several diseases characterized by immunological disorders. Thus, our data may suggest a link between some immunological disturbances and abnormal SCE frequencies in T lymphocyte subsets.  相似文献   

20.
K Miller 《Mutation research》1988,202(1):97-101
Human peripheral blood B and T lymphocytes, highly purified by immunologic methods, were supplemented with gamma-irradiated unseparated autologous mononuclear cells to restore helper functions and stimulated with pokeweed mitogen and phytohemagglutinin, respectively. Spontaneous sister-chromatid exchange (SCE) frequencies were investigated in proliferating B and T lymphocyte cultures labeled with the cell-type-specific borderline concentrations of 5-bromodeoxyuridine (BrdU) for sister-chromatid differentiation (SCD). B lymphocytes from 6 different donors showed mean values of 3.28-3.72 SCE events/cell. In T lymphocytes, mean values of 6.30-7.28 SCEs/cell were observed. The differences between the SCE distributions of the cell populations are highly significant. The results show that the differences in the spontaneous SCE frequencies between human B and T lymphocytes were not due to a difference in the uptake of BrdU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号