首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of the asymmetric distribution of aminophospholipids in mammalian cell plasma membranes is not understood at this time. One approach to determine the nature of such regulatory mechanisms is to attempt alteration of the plasma membrane phospholipid composition. Choline analogues such as N,N'-dimethylethanolamine and N-monomethylethanolamine lowered the quantity of phosphatidylethanolamine in the plasma membrane of LM fibroblasts grown in defined medium without serum. Ethanolamine supplementation increased the phosphatidylethanolamine content while ethanolamine analogues such as 2-amino-2-methyl-1-propanol, 2-amino-1-butanol, 1-aminopropanol, and 3-aminopropanol did not alter the aminophospholipid content significantly. The transverse distribution of aminophospholipids in the plasma membrane was determined by use of a chemical labelling reagent trinitrobenzenesulfonic acid. The percent phosphatidylethanolamine trinitrophenylated by trinitrobenzenesulfonate in the outer plasma membrane monolayer of LM cells supplemented with choline analogues was not altered. In contrast, ethanolamine analogue supplementation increased the percentage of aminophospholipid in the outer monolayer 2--3-fold. Ethanolamine analogue-containing phospholipids were distributed asymmetrically across the plasma membrane with 85 to 91% being located in the inner monolayer of the plasma membrane, a distribution similar to that of phosphatidylethanolamine. The fatty acyl composition of aminophospholipids in the outer monolayer was in all cases more saturated than in the corresponding phospholipids of the inner monolayer. However, choline analogues and especially the ethanolamine analogues reduced this difference. Thus, base analogues of choline and ethanolamine may alter the aminophospholipid asymmetry, the surface charge, and the acyl chain asymmetry of LM cell plasma membranes.  相似文献   

2.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.  相似文献   

3.
Murine neuroblastoma cells (clone N-2A) grown in suspension (spinner cells) or attached on a plastic surface (monolayer cells) were used in studies of the phospholipid and cholesterol composition of whole cells, primary plasma membranes, plasma membranes internalized during phagocytosis of polystyrene latex beads, mitochondria and microsomes. Monolayer cells contained higher concentrations of total phospholipid, phosphatidylserine and phosphatidylcholine, and lower concentration of phosphatidylethanolamine than spinner cells. The cholesterol levels and the relative proportions of the various phospholipids were similar in both cell types except phosphatidylethanolamine and sphingomyelin whose proportions were lower in monolayer cells. The primary plasma membranes of the two cell types differed significantly in the relative proportions of all phospholipids, except sphingomyelin, and the phospholipid to protein and the cholesterol to protein ratios were all higher in the membranes of spinner cells. In contrast to these results, all the phospholipid to protein and the cholesterol to protein ratios of the internalized plasma membranes were higher in monolayer than in spinner cells, and the proportions of all phospholipids, except phosphatidylethanolamine, were similar in both cell types. The membrane distributions of individual phospholipids and cholesterol were inferred from comparison of the phospholipid and cholesterol compositions of primary plasma membranes and plasma membranes internalized during phagocytosis of polystyrene beads. The results are consistent with a non-random distribution of most phospholipids in both spinner and monolayer cells, but the patterns of these distributions were different in the two cell types. With regard to cholesterol the results are compatible with a random or a heterogeneous distribution. All the phospholipid to protein ratios of the mitochondrial fraction of both cell types were lower than those of the plasma membranes. However, these ratios of the microsomal fraction were higher than those of the plasma membranes of monolayer cells, whereas they were comparable, with a few exceptions, to those of spinner cell membranes. The cholesterol to phospholipid molar ratios of plasma membranes were 6.4 and 4.3 fold greater than those of the mitochondrial and microsomal fractions, respectively.  相似文献   

4.
Aminophospholipid Asymmetry in Murine Synaptosomal Plasma Membrane   总被引:13,自引:10,他引:3  
The asymmetric distribution of aminophospholipids in isolated murine synaptosomal plasma membranes was determined by a chemical labeling procedure. Under nonpenetrating conditions, mouse brain synaptosomes were reacted with trinitrobenzenesulfonic acid (TNBS) to label outermonolayer aminophospholipids covalently. About 10-15% of the phosphatidylethanolamine and 20% of the phosphatidylserine were found to be in the outer monolayer of the synaptosomal plasma membrane. Furthermore, the fatty acyl group composition of the labeled phosphatidylethanolamine (outer monolayer) consisted of more saturated fatty acid than did the unlabeled phosphatidylethanolamine (inner monolayer). These results demonstrated an aminophospholipid asymmetry in synaptosomal plasma membranes which was independent of serum-lipoprotein exchange processes and also of phosphatidylethanolamine-methylatingenzymes.  相似文献   

5.
The intracellular trafficking processes controlling phagosomal maturation remain to be fully delineated. Mycobacterium tuberculosis var. bovis BCG, an organism that causes phagosomal maturation arrest, has emerged as a tool for dissection of critical phagosome biogenesis events. In this work, we report that cellubrevin, a v-SNARE functioning in endosomal recycling and implicated in endosomal interactions with post-Golgi compartments, plays a role in phagosomal maturation and that it is altered on mycobacterial phagosomes. Both mycobacterial phagosomes, which undergo maturation arrest, and model phagosomes containing latex beads, which follow the normal pathway of maturation into phagolysosomes, acquired cellubrevin. However, the mycobacterial and model phagosomes differed, as a discrete proteolytic degradation of this SNARE was detected on mycobacterial phagosomes. The observed cellubrevin alteration on mycobacterial phagosomes was not a passive event secondary to a maturation arrest at another checkpoint of the phagosome maturation pathway, since pharmacological inhibitors of phagosomal/endosomal pathways blocking phagosomal maturation did not cause cellubrevin degradation on model phagosomes. Cellubrevin status on phagosomes had consequences on phagosomal membrane and lumenal content trafficking, involving plasma membrane marker recycling and delivery of lysosomal enzymes. These results suggest that cellubrevin plays a role in phagosomal maturation and that it is a target for modification by mycobacteria or by infection-induced processes in the host cell.  相似文献   

6.
A new method to covalently link phosphatidylethanolamine via the headgroup at the surface of cell-size spherical polymer particles is described. Because the density of the reactive groups linked to the polymer beads is extremely high, a dense, tightly bonded lipid monolayer is formed. When a solubilized lipid is added to the suspension of monolayer-coated polymer beads, the spontaneous formation of a bilayer-like structure is observed. The upper layer of lipid can be removed by washing with detergent solution or organic solvents, ethanol or butanol, and can be replaced in a relipidation step by any other phospholipid; thus, an asymmetric lipid bilayer structure can be formed. Membrane-bound enzymes such as alanine aminopeptidase or dipeptidyl peptidase IV may be inserted with their hydrophobic anchor segments in a stable and enzymatically active form in this artificial system. Incorporation of integral membrane enzymes such as bacteriorhodopsin with membrane-spanning domains and bulky segments at both sides of the membrane succeeded only when a hydrophilic spacer of appropriate length (e.g., pentaalanine) was introduced between the carrier surface and the lipid headgroups.  相似文献   

7.
Secretion of lysosomes and related organelles is important for immune system function. High-resolution membrane capacitance techniques were used to track changes in membrane area in single phagocytes during opsonized polystyrene bead uptake and release. Secretagogue stimulation of cells preloaded with beads resulted in immediate vesicle discharge, visualized as step increases in capacitance. The size of the increases were consistent with phagosome size. This hypothesis was confirmed by direct observation of dye release from bead-containing phagosomes after secretagogue stimulation. Capacitance recordings of exocytosis were correlated with quantal free radical release, as determined by amperometry. Thus, phagosomes undergo regulated secretion in macrophages, one function of which may be to deliver sequestered free radicals to the extracellular space.  相似文献   

8.
Summary The interaction of local anesthetics with intact erythrocytes was studied by monitoring the extent of reaction of phospholipids with trinitrobenzenesulfonic acid and fluorodinitrobenzene. Incubating erythrocytes with local anesthetics increases the amount of phosphatidylethanolamine and phosphatidylserine available for reaction with trinitrobenzenesulfonic acid and fluorodinitrobenzene. The order of potency of the local anesthetics corresponded to that reported for blocking nerve conduction: dibucaine> tetracaine>butacaine>lidocaine>procaine. Treatment of intact erythrocytes with 1mm tetracaine at 37°C allows 4–5% more of the phosphatidylethanolamine to react with trinitrobenzenesulfonic acid as compared to control cells. Treatment with tetracaine has no effect at 0°C, a temperature at which there is only limited partitioning of the anesthetic into the bilayer. Kinetic analysis of the reaction with trinitrobenzene sulfonic acid showed that the increased number of reactive phosphatidylethanolamine molecules are located mainly on the outer half of the erythrocyte membrane. Tetracaine also increases the number of phosphatidylserine and phosphatidylethanolamine molecules in the erythrocyte membrane which are available to react with the penetrating probe fluorodinitrobenzene. The reaction with PE is increased from 67 to 77% and the reaction of PS is increased from 44 to 57%. Thus tetracaine affects both halves of the lipid bilayer.  相似文献   

9.
Mycobacterium tuberculosis (M.tb) is a leading cause of global infectious mortality. The pathogenesis of tuberculosis involves inhibition of phagosome maturation, leading to survival of M.tb within human macrophages. A key determinant is M.tb-induced inhibition of macrophage sphingosine kinase (SK) activity, which normally induces Ca2+ signaling and phagosome maturation. Our objective was to determine the spatial localization of SK during phagocytosis and its inhibition by M.tb. Stimulation of SK activity by killed M.tb, live Staphylococcus aureus, or latex beads was associated with translocation of cytosolic SK1 to the phagosome membrane. In contrast, SK1 did not associate with phagosomes containing live M.tb. To characterize the mechanism of phagosomal translocation, live cell confocal microscopy was used to compare the localization of wild-type SK1, catalytically inactive SK1G82D, and a phosphorylation-defective mutant that does not undergo plasma membrane translocation (SK1S225A). The magnitude and kinetics of translocation of SK1G82D and SK1S225A to latex bead phagosomes were indistinguishable from those of wild-type SK1, indicating that novel determinants regulate the association of SK1 with nascent phagosomes. These data are consistent with a model in which M.tb inhibits both the activation and phagosomal translocation of SK1 to block the localized Ca2+ transients required for phagosome maturation.  相似文献   

10.
We have studied the intracellular localization of annexins I,II, VI, VII, and XI in cells containing latex beads or Mycobacterium avium at different times after ingestion in order to establish whether a correlation existed between the association of annexins to phagosomes and phagolysosomal fusion, since the intracellular survival of mycobacteria is linked to an impairment of phagosome maturation. We demonstrate an important decrease in the levels of association of annexins I, VI, VII and XI, but not II to phagosomes containing either live or killed mycobacteria compared with phagosomes containing inert latex particles. The reduced association of annexins observed was detected only on M. avium-containing phagosomes and not in other cell membrane nor in cytosolic fractions from infected cells, and was apparent from 8 hours through to 4 days after phagocytosis. These findings add elements to the present knowledge of the phagosomal modifications that accompany the survival of intracellular pathogens, suggesting that annexins I, VI, VII, and XI play a secondary role in phagosomal fusion events while annexin II does not seem to be related to the mechanism of regulation of endolysosomal fusion.  相似文献   

11.
Phagosome maturation follows a defined biochemical program and, in the vast majority of cases, the microbe inside the phagosome is killed and digested. Although, an important number of pathogens, including Mycobacterium tuberculosis, which kills around two million people every year, have acquired the ability to survive, and even replicate by arresting phagosomal maturation. To identify more of the machinery involved in phagocytosis and phagosomal maturation, we investigated the function of Rab10 in engulfment and maturation of inert particles and Mycobacterium bovis bacille Calmette‐Guérin (BCG). We showed that Rab10 association with phagosomes is transient and confocal microscopy revealed detectible levels of Rab10 on phagosomal membranes at very early time‐points, occurring even before Rab5 acquisition. Rab10 recruitment had strong functional consequence, as the knockdown of endogenous Rab10 by RNA interference or overexpression of Rab10 dominant‐negative mutant delayed maturation of phagosomes of IgG‐opsonized latex beads or heat killed‐mycobacteria. These results can be explained, at least in part, by the involvement of Rab10 in recycling of some phagosomal components. More importantly, overexpression of the constitutively active mutant of Rab10 partially rescued live‐Mycobacterium‐containing phagosomes maturation. Indeed, we found that the membrane harbouring Mycobacterium acquired early endosome antigen 1 (EEA‐1), a marker excluded from phagosomes in control cells. Altogether these results indicate that Rab10, acting upstream of Rab5, plays a prominent role in phagolysosome formation and can modulate Mycobacterium‐containing phagosomes maturation.  相似文献   

12.
Membrane phospholipid asymmetry in Bacillus amyloliquefaciens.   总被引:2,自引:1,他引:1       下载免费PDF全文
The phospholipid distribution in the membrane of Bacillus amyloliquefaciens was studied by using phospholipase C (B. cereus), phospholipase A2 (Crotalus), and the nonpenetrating chemical probe trinitrobenzenesulfonic acid. After treatment of intact protoplasts of B. amyloliquefaciens with either phospholipase, about 70% of total membrane phospholipid was hydrolyzed; specifically, about 90, 90, and 30% of phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin, respectively. Under these conditions, protoplasts remained intact and sealed. However, when protoplasts that were permeabilized by cold-shock treatment were incubated with either of the phospholipases, up to 80% of cardiolipin was hydrolyzed and phosphatidylglycerol and phosphatidylethanolamine were hydrolyzed virtually to completion. In intact cells, 92% of the phosphatidylethanolamine could be labeled with trinitrobenzenesulfonic acid under conditions in which the reagent did not penetrate the membrane to any significant extent. These results indicate that 70% of total phospholipid of this bacillus exists in the outer half of the bilayer. The distribution of phosphatidylethanolamine in this bilayer is highly asymmetric with it being located predominantly in the outer half. The results with phospholipases suggest that the distributions of cardiolipin and phosphatidylglycerol are also asymmetric but independent confirmation of this is required.  相似文献   

13.
During phagosome maturation, the late endosomal marker Rab7 and the lysosomal marker LAMP1 localize to the phagosomes. We investigated the mobility of Rab7 and LAMP1 on the phagosomes in macrophages by fluorescence recovery after photobleaching (FRAP) analysis. Rab7 was mobile between the phagosomal membrane and the cytosol in macrophages that ingested latex beads during phagosome maturation. The addition of interferon-γ (IFN-γ) restricted this mobility, suggesting that Rab7 is forced to bind to the phagosomal membrane by IFN-γ-mediated activation. Immobilization of LAMP1 on the phagosomes was observed irrespective of IFN-γ-activation. We further examined the mobility of Rab7 on the phagosomes containing Mycobacterium bovis BCG by FRAP analysis. The rate of fluorescence recovery for Rab7 on mycobacterial phagosomes was lower than that on the phagosomes containing latex beads, suggesting that mycobacteria impaired the mobility of Rab7 and arrested phagosome maturation.  相似文献   

14.
Phagosomes contain class II MHC (MHC-II) and form peptide:MHC-II complexes, but the source of phagosomal MHC-II molecules is uncertain. Phagosomes may acquire nascent MHC-II or preexisting, recycling MHC-II that may be internalized from the plasma membrane. Brefeldin A (BFA) was used to deplete nascent MHC-II in murine macrophages to determine the relative contributions of nascent and recycling MHC-II molecules to phagocytic Ag processing. In addition, biotinylation of cell-surface proteins was used to assess the transport of MHC-II from the cell surface to phagosomes. BFA inhibited macrophage processing of latex bead-conjugated Ag for presentation to T cells, suggesting that nascent MHC-II molecules are important in phagocytic Ag processing. Furthermore, detection of specific peptide:MHC-II complexes in isolated phagosomes confirmed that BFA decreased formation of peptide:MHC-II complexes within phagosomes. Both flow organellometry and Western blot analysis of purified phagosomes showed that about two-thirds of phagosomal MHC-II was nascent (depleted by 3 h prior treatment with BFA) and primarily derived from intracellular sites. About one-third of phagosomal MHC-II was preexisting and primarily derived from the plasma membrane. BFA had little effect on phagosomal H2-DM or the degradation of bead-associated Ag. Thus, inhibition of phagocytic Ag processing by BFA correlated with depletion of nascent MHC-II in phagosomes and occurred despite the persistent delivery of plasma membrane-derived recycling MHC-II molecules and other Ag-processing components to phagosomes. These observations suggest that phagosomal Ag processing depends primarily on nascent MHC-II molecules delivered from intracellular sites, e.g., endocytic compartments.  相似文献   

15.
The distribution of phosphatidylethanolamine in the two lipid layers of chromatophores ofRhodospirillum rubrum has been analysed by chemical modification of phosphatidylethanolamine (PE) with trinitrobenzenesulfonic acid (TNBA) at low temperatures. Around 45±1% of the total phosphatidylethanolamine is labelled by this procedure independent on chromatophore purity, vesicle size, action of proteases and growth state of the cells. This demonstrates a complete modification of the accessible phosphatidylethanolamine and an asymmetric distribution of phosphatidylethanolamine, with 45% of the phosphatidylethanolamine in the outer part of the bilayer.Abbreviations TNBA 2,4,6 trinitrobenzenesulfonic acid - PE phosphatidylethanolamine - PMS phenazinmethosulfate  相似文献   

16.
BACKGROUND: Actin assembly on biological membranes is a poorly understood process. We have previously shown that phagosomal membranes could induce actin assembly in the presence of thymosin beta4 (an actin sequestering protein that inhibits nonspecific nucleation), via the barbed ends of actin filaments. METHODS: Here, we have developed an in vitro system based on fluorescein-labeled G (monomeric) actin and flow cytometry analysis, which allowed us to quantify de novo actin assembly on the cytoplasmic side of purified phagosomes. To standardize the system, we also used latex beads covalently coupled with polylysine, which efficiently promote actin nucleation. RESULTS: Flow cytometry analysis showed that the percentage of polylysine beads positive for F-actin filaments increased in a time- and G-actin concentration-dependent manner. Incubation of phagosomes with reagents affecting actin dynamics allowed us to extend our previous data showing that the phagosomal membranes assemble actin filaments de novo. Finally, our results pin-point a potential role for gelsolin as a positive regulator of actin assembly on the phagosomal membrane. CONCLUSIONS: We propose that our system could facilitate the development of other in vitro assays for the analysis of actin assembly and its links to signaling in cells.  相似文献   

17.
The mechanism of penetration of purified Rickettsia tsutsugamushi (Gilliam strain) into cultured mouse fibroblasts (L cells) was examined by electron microscopy. After 10-40 min of infection, rickettsiae in the process of being phagocytized were often seen on the cell surface. These were restricted to the rickettsiae which seemed to be intact in morphology, while heavy plasmolyzed ones were never phagocytized. Additionally, rickettsiae were taken up individually into a phagosome, and phagocytosis of several rickettsiae together was rarely observed, except in the case of heat-inactivated microorganisms. In the cells, phagosomes whose membranes enclosed rickettsiae either tightly or loosely were seen. Rickettsiae in the loose phagosomes often showed signs of plasmolysis and were rarely released into the cell cytoplasm. Partial disintegration of phagosomal membranes and the escape of rickettsiae from the phagosomes were seen only in tight phagosomes. Large phagosomes containing a clump of several rickettsiae were observed occasionally, in which case the microorganisms were deformed and seemed to be denatured. From the above observations and the frequency of appearance of these different penetration stages in the specimens 10, 20, and 40 min after infection, it was concluded that the rickettsiae enter initially into a tight phagosome by phagocytosis and are then released into the cell cytoplasm by disruption of the phagosomal membrane. No other mechanisms of penetration were found. On the other hand, rickettsiae inactivated by trypsin did not attach to host cells. Inactivation by heat or UV irradiation resulted in reduction of phagocytosis, and rickettsiae treated with rifamycin could penetrate into the host cell cytoplasm to the same extent as in the case of infection with intact rickettsiae.  相似文献   

18.
A model system with a high phagosomal membrane turnover has been developed: During a 45-min period Tetrahymena cells endocytoze 186 latex beads (diameter: 2.02 m) per average cell; 166 of these beads are then exocytozed in the course of the following 145 min. During the endocytotic phase an average cell is approximated to fabricate 1200 m2 phagosomal membrane. Freeze-etch electronmicroscopy reveals that both fracture faces of the nascent phagosomal membrane are associated with the typical 85 Å-particles in approximately equal numbers. Mature phagosomal membranes, however, show an unequal particle distribution. Smooth areas, smooth areas bordered with a fracture rim, and particle-associated depressions up to a diameter of 130 nm can be observed especially on fracture faces of mature phagosomes in the endocytotic phase. These are discussed with respect to membrane fusion.This paper is dedicated to Mr. W. Batz who died tragically on February 7, 1974  相似文献   

19.

Background

Phagocytosis has been extensively examined in ‘professional’ phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in ‘non-professional’ phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells.

Methodology/Principal Findings

Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification.

Conclusions/Significance

Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23–32 min, 3–4 min and 74–120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e.g. pathogen-host systems.  相似文献   

20.
Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号