首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2-M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the alpha subunit (alphaS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the alphaS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an approximately 92-fold increased gating equilibrium constant, which is consistent with an approximately 10-fold decreased EC(50) in the presence of ACh. With choline, this mutation accelerates channel opening approximately 28-fold, slows channel closing approximately 3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, alphaS269I acetylcholine receptors open at a rate of approximately 1.4 x 10(6) s(-1) and close at a rate of approximately 760 s(-1). These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of approximately 140 s(-1). Ile mutations at positions flanking alphaS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the alpha subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the alphaS269I mutation, Ile mutations at equivalent positions of the beta, straightepsilon, and delta subunits do not affect apparent open-channel lifetimes. However, in beta and straightepsilon, shifting the mutation one residue to the NH(2)-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2-M3L of the alpha subunit moves before the corresponding linkers of the beta and straightepsilon subunits.  相似文献   

2.
In alpha1, beta2, and gamma2 subunits of the gamma-aminobutyric acid A (GABA(A)) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in alpha1 and beta2 subunits resulted each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the gamma subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the alpha1 subunit or the beta2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the alpha and beta subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the alpha subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the alpha1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the alpha1 and beta2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.  相似文献   

3.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

4.
Adult and embryonic nicotinic receptors expressed in COS cells have similar affinities for acetylcholine but differ in their Hill coefficient. Parameters of wild-type receptors were compared with those of receptors with mutated delta and gamma subunits in selected negatively charged amino acids, which were expected to participate in agonist binding. A tentative scheme of affinities, allosteric interactions and channel gating efficacy was used for assessing the role of mutated amino acids in the channel function. In three models, the parameters of wild-type embryonic and adult receptors were compared with those of receptors with mutated delta and gamma subunits. The analysis of different models of channel activation indicates that negatively charged amino acids which were mutated in the delta subunit in embryonic receptors participate in channel gating and in allosteric interactions between subunits rather than directly in agonist binding. Changes in the gamma subunit in the embryonic receptors and delta subunit in the adult receptors could equally affect agonist binding, allosteric coupling between subunits or channel gating.  相似文献   

5.
An amino acid residue was found in M2 of gamma-aminobutyric acid (GABA) type A receptors that has profound effects on the binding of picrotoxin to the receptor and therefore may form part of its binding pocket. In addition, it strongly affects channel gating. The residue is located N-terminally to residues suggested so far to be important for channel gating. Point mutated alpha1beta(3) receptors were expressed in Xenopus oocytes and analyzed using the electrophysiological techniques. Coexpression of the alpha(1) subunit with the mutated beta(3) subunit beta(3)L253F led to spontaneous picrotoxin-sensitive currents in the absence of GABA. Nanomolar concentrations of GABA further promoted channel opening. Upon washout of picrotoxin, a huge transient inward current was observed. The reversal potential of the inward current was indicative of a chloride ion selectivity. The amplitude of the inward current was strongly dependent on the picrotoxin concentration and on the duration of its application. There was more than a 100-fold decrease in picrotoxin affinity. A kinetic model is presented that mimics the gating behavior of the mutant receptor. The point mutation in the neighboring residue beta(3)A252V resulted in receptors that displayed an about 6-fold increased apparent affinity to GABA and an about 10-fold reduced sensitivity to picrotoxin.  相似文献   

6.
The nicotinic receptor (AChR) is a pentamer of homologous subunits with an alpha(2)betaepsilondelta composition in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 15' of the M1 domain is phenylalanine in alpha subunits while it is isoleucine in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle AChR activation by combining mutagenesis with single-channel kinetic analysis. AChRs containing the mutant alpha subunit (alphaF15'I) as well as those containing the reverse mutations in the non-alpha subunits (betaI15'F, deltaI15'F, and epsilonI15'F) show prolonged lifetimes of the diliganded open channel resulting from a slower closing rate with respect to wild-type AChRs. The kinetic changes are not equivalent among subunits, the beta subunit, being the one that produces the most significant stabilization of the open state. Kinetic analysis of betaI15'F of AChR channels activated by the low-efficacious agonist choline revealed a 10-fold decrease in the closing rate, a 2.5-fold increase in the opening rate, a 28-fold increase in the gating equilibrium constant in the diliganded receptor, and a significant increase opening in the absence of agonist. Mutations at betaI15' showed that the structural bases of its contribution to gating is complex. Rate-equilibrium linear free-energy relationships suggest an approximately 70% closed-state-like environment for the beta15' position at the transition state of gating. The overall results identify position 15' as a subunit-selective determinant of channel gating and add new experimental evidence that gives support to the involvement of the M1 domain in the operation of the channel gating apparatus.  相似文献   

7.
The muscle nicotinic acetylcholine receptor is a large, allosteric, ligand-gated ion channel with the subunit composition alpha2betagammadelta. Although much is now known about the structure of the binding site, relatively little is understood about how the binding event is communicated to the channel gate, causing the pore to open. Here we identify a key hydrogen bond near the binding site that is involved in the gating pathway. Using mutant cycle analysis with the novel unnatural residue alpha-hydroxyserine, we find that the backbone N-H of alphaSer-191 in loop C makes a hydrogen bond to an anionic side chain of the complementary subunit upon agonist binding. However, the anionic partner is not the glutamate predicted by the crystal structures of the homologous acetylcholine-binding protein. Instead, the hydrogen-bonding partner is the extensively researched aspartate gammaAsp-174/deltaAsp-180, which had originally been identified as a key binding residue for cationic agonists.  相似文献   

8.
Ligand-gated ion channels respond to specific neurotransmitters by transiently opening an integral membrane ion-selective pore, allowing ions to move down their electrochemical gradient. A distinguishing feature of all members of the ligand-gated ion channel superfamily is the presence of a 13-amino acid disulfide loop (Cys-loop) in the extracellular ligand-binding domain. Structural data derived from the acetylcholine receptor place this loop at the interface between the ligand-binding domain and the transmembrane pore-forming domain where it is ideally located to participate in coupling ligand binding to channel opening. We have introduced specific mutations into a conserved motif at the mid-point of the Cys-loop of the GABA A receptor subunits alpha1, beta2 and gamma2S where the sequence reads aromatic, proline, aliphatic (ArProAl motif). Receptors carrying a mutation in the Cys-loop of one of their subunits were expressed in L929 cells and responses to both GABA and drugs were assessed using the whole-cell patch clamp technique. Drug potentiation and direct activation were significantly enhanced by mutations in this Cys-loop but these effects were subunit-dependent. Currents in response to agonists were larger when mutations were carried in the alpha and beta subunits but not in the gamma subunit. In contrast, potentiation of current responses by diazepam, etomidate and pentobarbital were all enhanced when mutations were carried in the alpha and gamma subunits, but not the beta subunit. Since the disruption of interactions mediated through the ArProAl motif enhances the mutant receptor's response to both agonist and drugs we suggest that this motif in the Cys-loop of the wild-type receptor participates in interactions that create activation barriers to conformational changes during channel gating.  相似文献   

9.
In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit.  相似文献   

10.
Y Chang  DS Weiss 《Biophysical journal》1999,77(5):2542-2551
A conserved leucine residue in the midpoint of the second transmembrane domain (M2) of the ligand-activated ion channel family has been proposed to play an important role in receptor activation. In this study, we assessed the importance of this leucine in the activation of rat alpha1beta2gamma2 GABA receptors expressed in Xenopus laevis oocytes by site-directed mutagenesis and two-electrode voltage clamp. The hydrophobic conserved M2 leucines in alpha1(L263), beta2(L259), and gamma2(L274) subunits were mutated to the hydrophilic amino acid residue serine and coexpressed in all possible combinations with their wild-type and/or mutant counterparts. The mutation in any one subunit decreased the EC(50) and created spontaneous openings that were blocked by picrotoxin and, surprisingly, by the competitive antagonist bicuculline. The magnitudes of the shifts in GABA EC(50) and picrotoxin IC(50) as well as the degree of spontaneous openings were all correlated with the number of subunits carrying the leucine mutation. Simultaneous mutation of the GABA binding site (beta2Y157S; increased the EC(50)) and the conserved M2 leucine (beta2L259S; decreased the EC(50)) produced receptors with the predicted intermediate agonist sensitivity, indicating the two mutations affect binding and gating independently. The results are discussed in light of a proposed allosteric activation mechanism.  相似文献   

11.
Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse alpha-subunit 92-100) that links the beta4 and beta5 strands of the extracellular domain and that (in the alpha-subunit) contains binding segment A. Based on the structure of the acetylcholine binding protein, we speculate that in AChRs L5 projects from the transmitter binding site toward the membrane along a subunit interface. We used single-channel kinetics to quantify the effects of mutations to alphaD97 and other L5 residues with respect to agonist binding (to both open and closed AChRs), channel gating (for both unliganded and fully-liganded AChRs), and desensitization. Most alphaD97 mutations increase gating (up to 168-fold) but have little or no effect on ligand binding or desensitization. Rate-equilibrium free energy relationship analysis indicates that alphaD97 moves early in the gating reaction, in synchrony with the movement of the transmitter binding site (Phi = 0.93, which implies an open-like character at the transition state). alphaD97 mutations in the two alpha-subunits have unequal energetic consequences for gating, but their contributions are independent. We conclude that the key, underlying functional consequence of alphaD97 perturbations is to increase the unliganded gating equilibrium constant. L5 emerges as an important and early link in the AChR gating reaction which, in the absence of agonist, serves to increase the relative stability of the closed conformation of the protein.  相似文献   

12.
Binding of agonists to nicotinic acetylcholine receptors generates a sequence of conformational changes resulting in channel opening. Previously, we have shown that the aspartate residue Asp-266 at the M2-M3 linker of the alpha7 nicotinic receptor is involved in connecting binding and gating. High resolution structural data suggest that this region could interact with the so-called loops 2 and 7 of the extracellular N-terminal region. In this case, certain charged amino acids present in these loops could integrate together with Asp-266 and other amino acids, a mechanism involved in channel activation. To test this hypothesis, all charged residues in these loops, Asp-42, Asp-44, Glu-45, Lys-46, Asp-128, Arg-130, and Asp-135, were substituted with other amino acids, and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Glu-45, Lys-46, and Asp-135 exhibited poor or null functional responses to different nicotinic agonists regardless of significant membrane expression, whereas D128A showed a gain of function effect. Because the double reverse charge mutant K46D/D266K did not restore receptor function, a gating mechanism controlled by the pairwise electrostatic interaction between these residues is not likely. Rather, a network of interactions formed by residues Lys-46, Asp-128, Asp-135, Asp-266, and possibly others appears to link agonist binding to channel gating.  相似文献   

13.
Large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are exquisitely regulated to suit their diverse roles in a large variety of physiological processes. BK channels are composed of pore-forming alpha subunits and a family of tissue-specific accessory beta subunits. The smooth muscle-specific beta1 subunit has an essential role in regulating smooth muscle contraction and modulates BK channel steady-state open probability and gating kinetics. Effects of beta1 on channel's gating energetics are not completely understood. One of the difficulties is that it has not yet been possible to measure the effects of beta1 on channel's intrinsic closed-to-open transition (in the absence of voltage sensor activation and Ca(2+) binding) due to the very low open probability in the presence of beta1. In this study, we used a mutation of the alpha subunit (F315Y) that increases channel openings by greater than four orders of magnitude to directly compare channels' intrinsic open probabilities in the presence and absence of the beta1 subunit. Effects of beta1 on steady-state open probabilities of both wild-type alpha and the F315Y mutation were analyzed using the dual allosteric HA model. We found that mouse beta1 has two major effects on channel's gating energetics. beta1 reduces the intrinsic closed-to-open equilibrium that underlies the inhibition of BK channel opening seen in submicromolar Ca(2+). Further, P(O) measurements at limiting slope allow us to infer that beta1 shifts open channel voltage sensor activation to negative membrane potentials, which contributes to enhanced channel opening seen at micromolar Ca(2+) concentrations. Using the F315Y alpha subunit with deletion mutants of beta1, we also demonstrate that the small N- and C-terminal intracellular domains of beta1 play important roles in altering channel's intrinsic opening and voltage sensor activation. In summary, these results demonstrate that beta1 has distinct effects on BK channel intrinsic gating and voltage sensor activation that can be functionally uncoupled by mutations in the intracellular domains.  相似文献   

14.
Homomeric alpha7 and heteromeric alpha4beta2 nicotinic acetylcholine receptors (nAChR) can be distinguished by their pharmacological properties, including agonist specificity. We introduced point mutations of conserved amino acids within the C loop, a region of the receptor critical for agonist binding, and we examined the expression of the mutant receptors in Xenopus oocytes. Mutation of either a conserved C loop tyrosine (188) to phenylalanine or a nearby conserved aspartate (197) to alanine resulted in alpha7 receptors for which the alpha7-selective agonist 3-(4-hydroxy, 2-methoxybenzylidene) anabaseine (4OH-GTS-21) had roughly the same potency as for wild-type receptors, whereas the physiologic agonist acetylcholine (ACh) showed drastically reduced potency for these mutant receptors. Corresponding mutations in alpha4 receptors co-expressed with beta2 resulted in alpha4beta2 receptors for which ACh potency was relatively unchanged, although the efficacy of the alpha7-selective agonist 4OH-GTS-21 was increased greatly relative to that of ACh. We also investigated the significance of a conserved lysine (145 in alpha7), proposed to form a stable salt bridge with Asp-197 in the resting state of the receptor. Mutations of this residue in both alpha7 and alpha4 resulted in receptors that were largely unresponsive to both ACh and 4OH-GTS-21. Our results suggest that initiation of gating depends both on specific interactions between residues in the C loop domain and, depending on receptor subtype, the physiochemical properties of the agonist, so that in the altered environment of the alpha4Y190F-binding site, large hydrophobic benzylidene anabaseines may close the C loop and initiate channel gating more effectively than the polar agonist ACh.  相似文献   

15.
The nicotinic acetylcholine receptor (AChR) is a pentameric transmembrane protein (alpha 2 beta gamma delta) that binds the neurotransmitter acetylcholine (ACh) and transduces this binding into the opening of a cation selective channel. The agonist, competitive antagonist, and snake toxin binding functions of the AChR are associated with the alpha subunit (Kao et al., 1984; Tzartos and Changeux, 1984; Wilson et al., 1985; Kao and Karlin, 1986; Pederson et al., 1986). We used site-directed mutagenesis and expression of AChR in Xenopus oocytes to identify amino acid residues critical for ligand binding and channel activation. Several mutations in the alpha subunit sequence were constructed based on information from sequence homology and from previous biochemical (Barkas et al., 1987; Dennis et al., 1988; Middleton and Cohen, 1990) and spectroscopic (Pearce and Hawrot, 1990; Pearce et al., 1990) studies. We have identified one mutation, Tyr190 to Phe (Y190F), that had a dramatic effect on ligand binding and channel activation. These mutant channels required more than 50-fold higher concentrations of ACh for channel activation than did wild type channels. This functional change is largely accounted for by a comparable shift in the agonist binding affinity, as assessed by the ability of ACh to compete with alpha-bungarotoxin binding. Other mutations at nearby conserved positions of the alpha subunit (H186F, P194S, Y198F) produce less dramatic changes in channel properties. Our results demonstrate that ligand binding and channel gating are separable properties of the receptor protein, and that Tyr190 appears to play a specific role in the receptor site for acetylcholine.  相似文献   

16.
Although agonists and competitive antagonists presumably occupy overlapping binding sites on ligand-gated channels, these interactions cannot be identical because agonists cause channel opening whereas antagonists do not. One explanation is that only agonist binding performs enough work on the receptor to cause the conformational changes that lead to gating. This idea is supported by agonist binding rates at GABA(A) and nicotinic acetylcholine receptors that are slower than expected for a diffusion-limited process, suggesting that agonist binding involves an energy-requiring event. This hypothesis predicts that competitive antagonist binding should require less activation energy than agonist binding. To test this idea, we developed a novel deconvolution-based method to compare binding and unbinding kinetics of GABA(A) receptor agonists and antagonists in outside-out patches from rat hippocampal neurons. Agonist and antagonist unbinding rates were steeply correlated with affinity. Unlike the agonists, three of the four antagonists tested had binding rates that were fast, independent of affinity, and could be accounted for by diffusion- and dehydration-limited processes. In contrast, agonist binding involved additional energy-requiring steps, consistent with the idea that channel gating is initiated by agonist-triggered movements within the ligand binding site. Antagonist binding does not appear to produce such movements, and may in fact prevent them.  相似文献   

17.
We examined functional consequences of intrasubunit contacts in the nicotinic receptor alpha subunit using single channel kinetic analysis, site-directed mutagenesis, and structural modeling. At the periphery of the ACh binding site, our structural model shows that side chains of the conserved residues alphaK145, alphaD200, and alphaY190 converge to form putative electrostatic interactions. Structurally conservative mutations of each residue profoundly impair gating of the receptor channel, primarily by slowing the rate of channel opening. The combined mutations alphaD200N and alphaK145Q impair channel gating to the same extent as either single mutation, while alphaK145E counteracts the impaired gating due to alphaD200K, further suggesting electrostatic interaction between these residues. Interpreted in light of the crystal structure of acetylcholine binding protein (AChBP) with bound carbamylcholine (CCh), the results suggest in the absence of ACh, alphaK145 and alphaD200 form a salt bridge associated with the closed state of the channel. When ACh binds, alphaY190 moves toward the center of the binding cleft to stabilize the agonist, and its aromatic hydroxyl group approaches alphaK145, which in turn loosens its contact with alphaD200. The positional changes of alphaK145 and alphaD200 are proposed to initiate the cascade of perturbations that opens the receptor channel: the first perturbation is of beta-strand 7, which harbors alphaK145 and is part of the signature Cys-loop, and the second is of beta-strand 10, which harbors alphaD200 and connects to the M1 domain. Thus, interplay between these three conserved residues relays the initial conformational change from the ACh binding site toward the ion channel.  相似文献   

18.
The identification of residues that line neurotransmitter-binding sites and catalyze allosteric transitions that result in channel gating is crucial for understanding ligand-gated ion channel function. In this study, we used the substituted cysteine accessibility method and two-electrode voltage clamp to identify novel gamma-aminobutyric acid (GABA)-binding site residues and to elucidate the secondary structure of the Trp(92)-Asp(101) region of the beta(2) subunit. Each residue was mutated individually to cysteine and expressed with wild-type alpha(1) subunits in Xenopus oocytes. GABA-gated currents (I(GABA)) were measured before and after exposure to the sulfhydryl reagent, N-biotinylaminoethyl methanethiosulfonate (MTS). V93C, D95C, Y97C, and L99C are accessible to derivatization. This pattern of accessibility is consistent with beta(2)Val(93)-Leu(99) adopting a beta-strand conformation. Both GABA and SR95531 protect Y97C and L99C from modification, indicating that these two residues line the GABA-binding site. In D95C-containing receptors, application of MTS in the presence of SR95531 causes a greater effect on I(GABA) than MTS alone, suggesting that binding of a competitive antagonist can cause movements in the binding site. In addition, we present evidence that beta(2)L99C homomers form spontaneously open channels. Thus, mutation of a binding site residue can alter channel gating, which implies that Leu(99) may be important for coupling agonist binding to channel gating.  相似文献   

19.
In ionotropic glutamate receptors, agonist binding occurs in a conserved clam shell-like domain composed of the two lobes D1 and D2. Docking of glutamate into the binding cleft promotes rotation in the hinge region of the two lobes, resulting in closure of the binding pocket, which is thought to represent a prerequisite for channel gating. Here, we disrupted D1D2 interlobe interactions in the NR2A subunit of N-methyl-d-aspartate (NMDA) receptors through systematic mutation of individual residues and studied the influence on the activation kinetics of currents from NR1/NR2 NMDA receptors heterologously expressed in HEK cells. We show that the mutations affect differentially glutamate binding and channel gating, depending on their location within the binding domain, mainly by altering k(off) and k(cl), respectively. Whereas impaired stability of glutamate in its binding site is the only effect of mutations on one side of the ligand binding pocket, close to the hinge region, alterations in gating are the predominant consequence of mutations on the opposite side, at the entrance of the binding pocket. A mutation increasing D1D2 interaction at the entrance of the pocket resulted in an NMDA receptor with an increased open probability as demonstrated by single channel and whole cell kinetic analysis. Thus, the results indicate that agonist-induced binding domain closure is itself a complex process, certain aspects of which are coupled either to binding or to gating. Specifically, we propose that late steps of domain closure, in kinetic terms, represent part of channel gating.  相似文献   

20.
The initial coupling between ligand binding and channel gating in the human α7 nicotinic acetylcholine receptor (nAChR) has been investigated with targeted molecular dynamics (TMD) simulation. During the simulation, eight residues at the tip of the C-loop in two alternating subunits were forced to move toward a ligand-bound conformation as captured in the crystallographic structure of acetylcholine binding protein (AChBP) in complex with carbamoylcholine. Comparison of apo- and ligand-bound AChBP structures shows only minor rearrangements distal from the ligand-binding site. In contrast, comparison of apo and TMD simulation structures of the nAChR reveals significant changes toward the bottom of the ligand-binding domain. These structural rearrangements are subsequently translated to the pore domain, leading to a partly open channel within 4 ns of TMD simulation. Furthermore, we confirmed that two highly conserved residue pairs, one located near the ligand-binding pocket (Lys145 and Tyr188), and the other located toward the bottom of the ligand-binding domain (Arg206 and Glu45), are likely to play important roles in coupling agonist binding to channel gating. Overall, our simulations suggest that gating movements of the α7 receptor may involve relatively small structural changes within the ligand-binding domain, implying that the gating transition is energy-efficient and can be easily modulated by agonist binding/unbinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号