首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The high-affinity receptor for granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a unique alpha chain and a beta c subunit that is shared with the receptors for interleukin-3 (IL-3) and IL-5. Two regions of the beta c chain have been defined; these include a membrane-proximal region of the cytoplasmic domain that is required for mitogenesis and a membrane-distal region that is required for activation of Ras, Raf-1, mitogen-activated protein kinase, and S6 kinase. Recent studies have implicated the cytoplasmic protein tyrosine kinase JAK2 in signalling through a number of the cytokine receptors, including the IL-3 and erythropoietin receptors. In the studies described here, we demonstrate that GM-CSF stimulation of cells induces the tyrosine phosphorylation of JAK2 and activates its in vitro kinase activity. Mutational analysis of the beta c chain demonstrates that only the membrane-proximal 62 amino acids of the cytosolic domain are required for JAK2 activation. Thus, JAK2 activation is correlated with induction of mitogenesis but does not, alone, activate the Ras pathway. Carboxyl truncations of the alpha chain, which inactivate the receptor for mitogenesis, are unable to mediate GM-CSF-induced JAK2 activation. Using baculovirus-expressed proteins, we further demonstrate that JAK2 physically associates with the beta c chain but not with the alpha chain. Together, the results further support the hypothesis that the JAK family of kinase are critical to coupling cytokine binding to tyrosine phosphorylation and ultimately mitogenesis.  相似文献   

2.
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors.  相似文献   

3.
Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation.  相似文献   

4.
Previous studies have shown that the abundant herpes simplex virus 1 (HSV-1) tegument protein VP11/12, encoded by gene UL46, stimulates phosphatidylinositol 3-kinase (PI3-kinase)/Akt signaling: it binds the Src family kinase (SFK) Lck, is tyrosine phosphorylated, recruits the p85 subunit of PI3-kinase, and is essential for the activation of Akt during HSV-1 infection. The C-terminal region of VP11/12 contains tyrosine-based motifs predicted to bind the SH2 domains of SFKs (YETV and YEEI), p85 (YTHM), and Grb2 (YENV) and the phosphotyrosine-binding (PTB) domain of Shc (NPLY). We inactivated each of these motifs in the context of the intact viral genome and examined effects on binding and activation of Lck and recruitment of p85, Grb2, and Shc. Inactivating the p85, Grb2, or Shc motif reduced (p85) or eliminated (Grb2 and Shc) the interaction with the cognate signaling molecule without greatly affecting the other interactions or activation of Lck. Inactivating either SFK motif had only a minor effect on Lck binding and little or no effect on recruitment of p85, Grb2, or Shc. In contrast, inactivation of both SFK motifs severely reduced Lck binding and activation and tyrosine phosphorylation of VP11/12 and reduced (p85) or eliminated (Grb2 and Shc) binding of other signaling proteins. Overall, these data demonstrate the key redundant roles of the VP11/12 SFK-binding motifs in the recruitment and activation of SFKs and indicate that activated SFKs then lead (directly or indirectly) to phosphorylation of the additional motifs involved in recruiting p85, Grb2, and Shc. Thus, VP11/12 appears to mimic an activated growth factor receptor.  相似文献   

5.
Flk2/Flt3 is a recently identified receptor tyrosine kinase expressed in brain, placenta, testis, and primitive hematopoietic cells. The mitogenic signalling potential and biochemical properties of Flk2/Flt3 have been analyzed by using a chimeric receptor composed of the extracellular domain of the human colony-stimulating factor 1 receptor and the transmembrane and cytoplasmic domains of murine Flk2/Flt3. We demonstrate that colony-stimulating factor 1 stimulation of the Flk2/Flt3 kinase in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a full proliferative response in the absence of other growth factors. In transfected interleukin 3 (IL-3)-dependent Ba/F3 lymphoid cells, activation of the chimeric receptor can abrogate IL-3 requirement and sustain long-term proliferation. We show that phospholipase C-gamma 1, Ras GTPase-activating protein, the p85 subunit of phosphatidylinositol 3'-kinase, Shc, Grb2, Vav, Fyn, and Src are components of the Flk2/Flt3 signal transduction pathway. In addition, we demonstrate that phospholipase C-gamma 1, the p85 subunit of phosphatidylinositol 3'-kinase, Shc, Grb2, and Src family tyrosine kinases, but not Ras GTPase-activating protein, Vav, or Nck, physically associate with the Flk2/Flt3 cytoplasmic domain. Cell-type-specific differences in tyrosine phosphorylation of p85 and Shc are observed. A comparative analysis of the Flk2/Flt3 signal cascade with those of the endogenous platelet-derived growth factor and IL-3 receptors indicates that Flk2/Flt3 displays specific substrate preferences. Furthermore, tyrosine phosphorylation of p85 and Shc is similarly affected by totally different growth factors in the same cellular background.  相似文献   

6.
We have recently shown that a heterotrimeric G(i) protein is coupled to the erythropoietin (Epo) receptor. The G(i) protein constitutively associates in its heterotrimeric form with the intracellular domain of Epo receptor (EpoR). After Epo stimulation G(i) is released from the receptor and activated. In the present study we have investigated the functional role of the heterotrimeric G(i) protein bound to EpoR. In Chinese hamster ovary cells expressing EpoR, the G(i) inhibitor pertussis toxin blocked mitogen-activated protein kinase (MAPK) Erk1/2 activation induced by Epo. Epo-dependent MAPK activation was also sensitive to the G beta gamma competitive inhibitor beta ARK1-ct (C-terminal fragment of the beta-adrenergic receptor kinase), to the Ras dominant negative mutant RasN17, and to the phosphoinositide 3-kinase (PI3K) inhibitor LY 294002. A region of 7 amino acids (469-475) in the C-terminal end of EpoR was shown to be required for G(i) binding to EpoR in vivo. Deletion of this region in EpoR abolished both MAPK and PI3K activation in response to Epo. We conclude that in Chinese hamster ovary cells, Epo activates MAPK via a novel pathway dependent on G(i) association to EpoR, G beta gamma subunit, Ras, and PI3K. The tyrosine kinase Jak2 also contributes to this new pathway, more likely downstream of beta gamma and upstream of Ras and PI3K. This pathway is similar to the best characterized pathway used by seven transmembrane receptors coupled to G(i) to activate MAPK and may cooperate with other described Epo-dependent MAPK activation pathways in hematopoietic cells.  相似文献   

7.
The Lck tyrosine kinase is involved in signaling by T cell surface receptors such as TCR/CD3, CD2, and CD28. As other downstream protein-tyrosine kinases are activated upon stimulation of these receptors, it is difficult to assign which tyrosine-phosphorylated proteins represent bona fide Lck substrates and which are phosphorylated by other tyrosine kinases. We have developed a system in which Lck can be activated independently of TCR/CD3. We have shown that activation of an epidermal growth factor receptor/Lck chimera leads to the specific phosphorylation of Ras GTPase-activating protein (RasGAP) and two RasGAP-associated proteins, p56(dok) and p62(dok). Activation of the chimeric protein correlates with an increase in cellular Ca(2+) in the absence of ZAP-70 and phospholipase Cgamma1 phosphorylation. Furthermore, we have found that p62(dok) co-immunoprecipitates with the activated epidermal growth factor receptor/LckF505 and that phosphorylated Dok proteins bind to the Src homology 2 domain of Lck in vitro. In addition, we have shown that activation via the CD2 but not the TCR/CD3 receptor leads to the phosphorylation of p56(dok) and p62(dok). Using JCaM1.6 cells, we have demonstrated that Lck is required for CD2-mediated phosphorylation of Dok proteins. We propose that phosphorylation and Src homology 2-mediated association of p56(dok) and p62(dok) with Lck play a selective function in accessory receptor signal transduction mechanisms.  相似文献   

8.
CIS is a cytokine-induced SH2-containing protein that was originally cloned as an interleukin (IL)-3-inducible gene. CIS is known to associate with the IL-3 receptor beta chain and erythropoietin receptor and to inhibit signaling mediated by IL-3 and erythropoietin. We now demonstrate that CIS also interacts with the IL-2 receptor beta chain (IL-2Rbeta). This interaction requires the A region of IL-2Rbeta (residues 313-382), which also mediates the association of IL-2Rbeta with Lck and Jak3. Correspondingly, CIS inhibits functions associated with both of these kinases: Lck-mediated phosphorylation of IL-2Rbeta and IL-2-mediated activation of Stat5. Thus, we demonstrate that CIS can negatively control at least two independent IL-2 signaling pathways. Although a functional SH2 binding domain of CIS was not required for its interaction with IL-2Rbeta in vitro, its phosphotyrosine binding capability was essential for the inhibitory action of CIS. On this basis, we have generated a mutant form of CIS protein with an altered SH2 domain that acts as a dominant negative and should prove useful in further understanding CIS action.  相似文献   

9.
We have identified two tyrosine phosphorylation sites, Tyr 1009 and Tyr 1021, in the C-terminal noncatalytic region of the human platelet-derived growth factor (PDGF) receptor beta subunit. Mutant receptors with phenylalanine substitutions at either or both of these tyrosines were expressed in dog epithelial cells. Mutation of Tyr 1021 markedly reduced the PDGF-stimulated binding of phospholipase C (PLC) gamma 1 but had no effect on binding of the GTPase activator protein of Ras or of phosphatidylinositol 3 kinase. Mutation of Tyr 1009 reduced binding of PLC gamma 1 less severely. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, also reduced the PDGF-dependent binding of a transiently expressed fusion protein containing the two Src-homology 2 domains from PLC gamma 1. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, greatly reduced PDGF-stimulated tyrosine phosphorylation of PLC gamma 1 but did not prevent the tyrosine phosphorylation of other cell proteins, including mitogen-activated protein kinase. We conclude that Tyr 1021, and possibly Tyr 1009, is a binding site for PLC gamma 1.  相似文献   

10.
When expressed in PC12 cells, the platelet-derived growth factor beta receptor (beta PDGF-R) mediates cell differentiation. Mutational analysis of the beta PDGF-R indicated that persistent receptor stimulation of the Ras/Raf/mitogen-activated protein (MAP) kinase pathway alone was insufficient to sustain PC12 cell differentiation. PDGF receptor activation of signal pathways involving p60c-src or the persistent regulation of phospholipase C gamma was required for PC12 cell differentiation. beta PDGF-R regulation of phosphatidylinositol 3-kinase, the GTPase-activating protein of Ras, and the tyrosine phosphatase, Syp, was not required for PC12 cell differentiation. In contrast to overexpression of oncoproteins involved in regulating the MAP kinase pathway, growth factor receptor-mediated differentiation of PC12 cells requires the integration of other signals with the Ras/Raf/MAP kinase pathway.  相似文献   

11.
The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) and other neurotrophins induce a unique prolonged activation of mitogen-activated protein kinase (MAPK) compared with growth factors. Characterization and kinetic and spatial modeling of the signaling pathways underlying this prolonged MAPK activation by BDNF will be important in understanding the physiological role of BDNF in many complex systems in the nervous system. In addition to Shc, fibroblast growth factor receptor substrate 2 (FRS2) is required for the BDNF-induced activation of MAPK. BDNF induces phosphorylation of FRS2. However, BDNF does not induce phosphorylation of FRS2 in cells expressing a deletion mutant of TrkB (TrkBDeltaPTB) missing the juxtamembrane NPXY motif. This motif is the binding site for SHC. NPXY is the consensus sequence for phosphotyrosine binding (PTB) domains, and notably, FRS2 and SHC contain PTB domains. This NPXY motif, which contains tyrosine 484 of TrkB, is therefore the binding site for both FRS2 and SHC. Moreover, the proline containing region (VIENP) of the NPXY motif is also required for FRS2 and SHC phosphorylation, which indicates this region is an important component of FRS2 and SHC recognition by TrkB. Previously, we had found that the phosphorylation of FRS2 induces association of FRS2 and growth factor receptor binding protein 2 (Grb2). Now, we have intriguing data that indicates BDNF induces association of the SH2 domain containing protein tyrosine phosphatase, Shp2, with FRS2. Moreover, the PTB association motif of TrkB containing tyrosine 484 is required for the BDNF-induced association of Shp2 with FRS2 and the phosphorylation of Shp2. These results imply that FRS2 and Shp2 are in a BDNF signaling pathway. Shp2 is required for complete MAPK activation by BDNF, as expression of a dominant negative Shp2 in cells attenuates BDNF-induced activation of MAPK. Moreover, expression of a dominant negative Shp2 attenuates Ras activation showing that the protein tyrosine phosphatase is required for complete activation of MAPKs by BDNF. In conclusion, Shp2 regulates BDNF signaling through the MAPK pathway by regulating either Ras directly or alternatively, by signaling components upstream of Ras. Characterization of MAPK signaling controlled by BDNF is likely to be required to understand the complex physiological role of BDNF in neuronal systems ranging from the regulation of neuronal growth and survival to the regulation of synapses.  相似文献   

13.
The Lck tyrosine kinase molecule plays an essential role in T cell activation and T cell development. Using the expression cloning technique, we have isolated a gene that encodes a molecule, LckBP1, able to associate with murine Lck. Analysis of full-length LckBP1 cDNA indicates at least four potentially important segments: a four tandem 37 amino acid repeat motif with a potential helix-turn-helix DNA binding motif; a proline-rich region; a proline-glutamate repeat; and an SH3 domain. These four regions are very similar to the human haematopoietic-specific protein 1 (HS1). Deletion mutant analysis of LckBP1 revealed two proline-rich regions that permit association with Lck SH3. One region contains prolines conserved among HS1 and cortactin, and the other region contains a potential MAP kinase recognition site. In vivo association between Lck and LckBP1 was confirmed by immunoprecipitation of lysates from a pre-T cell line and adult thymocytes using antibodies specific for Lck and LckBP1. LckBP1 is tyrosine phosphorylated after T-cell receptor stimulation. The SH3 domain and the potential helix-turn-helix motif in LckBP1 suggest that this molecule may associate with various molecules and function as a DNA binding molecule. The data also suggest that LckBP1 mediates intracellular signalling through Lck in T cells.  相似文献   

14.
15.
Here we provide evidence to show that the platelet-derived growth factor beta receptor is tethered to endogenous G-protein-coupled receptor(s) in human embryonic kidney 293 cells. The tethered receptor complex provides a platform on which receptor tyrosine kinase and G-protein-coupled receptor signals can be integrated to produce more efficient stimulation of the p42/p44 mitogen-activated protein kinase pathway. This was based on several lines of evidence. First, we have shown that pertussis toxin (which uncouples G-protein-coupled receptors from inhibitory G-proteins) reduced the platelet-derived growth factor stimulation of p42/p44 mitogen-activated protein kinase. Second, transfection of cells with inhibitory G-protein alpha subunit increased the activation of p42/p44 mitogen-activated protein kinase by platelet-derived growth factor. Third, platelet-derived growth factor stimulated the tyrosine phosphorylation of the inhibitory G-protein alpha subunit, which was blocked by the platelet-derived growth factor kinase inhibitor, tyrphostin AG 1296. We have also shown that the platelet-derived growth factor beta receptor forms a tethered complex with Myc-tagged endothelial differentiation gene 1 (a G-protein-coupled receptor whose agonist is sphingosine 1-phosphate) in cells co-transfected with these receptors. This facilitates platelet-derived growth factor-stimulated tyrosine phosphorylation of the inhibitory G-protein alpha subunit and increases p42/p44 mitogen-activated protein kinase activation. In addition, we found that G-protein-coupled receptor kinase 2 and beta-arrestin I can associate with the platelet-derived growth factor beta receptor. These proteins play an important role in regulating endocytosis of G-protein-coupled receptor signal complexes, which is required for activation of p42/p44 mitogen-activated protein kinase. Thus, platelet-derived growth factor beta receptor signaling may be initiated by G-protein-coupled receptor kinase 2/beta-arrestin I that has been recruited to the platelet-derived growth factor beta receptor by its tethering to a G-protein-coupled receptor(s). These results provide a model that may account for the co-mitogenic effect of certain G-protein-coupled receptor agonists with platelet-derived growth factor on DNA synthesis.  相似文献   

16.
The high-affinity receptor for interleukin-2 (IL-2) is composed of two distinct subunits with molecular weights of 55,000 and 75,000 (p55 and p75). While the presence of the high-affinity receptor requires the simultaneous expression of p55 and p75, these subunits can also be expressed independently, resulting in IL-2 receptors with low and intermediate affinities, respectively. IL-2 can induce proliferation in cells expressing either the intermediate affinity p75 receptor or the p55.p75 high-affinity complex, suggesting that p75 is responsible for signal transduction. We have previously shown that signal transduction by the high-affinity IL-2 receptor involves the activation of a tyrosine protein kinase. In order to evaluate the role of p75 in the activation of this kinase we assessed the ability of IL-2 to induce the activation of a tyrosine protein kinase in the human leukemic cell lines Hut 78 and YT. These cells express p75 as the predominant IL-2 receptor. IL-2-dependent tyrosine phosphorylation was observed in both cell lines and the concentrations of IL-2 needed to stimulate this phosphorylation were similar to that required for binding to the p75 receptor. Antibodies that inhibit binding of IL-2 to p55 had no effect on the IL-2-induced tyrosine phosphorylations in YT cells, while antibodies that block the binding of IL-2 to p75 completely inhibited the phosphorylations. These results demonstrate that the signaling capacity for the IL-2-induced tyrosine phosphorylation resides in the p75 receptor.  相似文献   

17.
Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4− flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways.  相似文献   

18.
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.  相似文献   

19.
Cell surface expression of the high affinity IL-2R regulates, in part, the proliferative response occurring in Ag- or mitogen-activated T cells. The functional high affinity IL-2R is composed of at least two distinct ligand-binding components, IL-2R alpha (Tac, p55) and IL-2R beta (p70/75). The IL-2R beta polypeptide appears to be essential for growth signal transduction, whereas the IL-2R alpha protein participates in the regulation of receptor affinity. We have prepared and characterized two mAb, DU-1 and DU-2, that specifically react with IL-2R beta. In vitro kinase assays performed with DU-2 immunoprecipitates, but not anti-IL-2R alpha or control antibody immunoprecipitates, have revealed co-precipitation of a tyrosine kinase enzymatic activity that mediates phosphorylation of IL-2R beta. Because both IL-2R alpha and IL-2R beta lack tyrosine kinase enzymatic domains, these findings strongly suggest that noncovalent association of a tyrosine kinase with the high affinity IL-2R complex. Deletion mutants of the intracellular region of IL-2R beta, lacking either a previously described "critical domain" between amino acids 267 and 322 or the carboxyl-terminal 198 residues (IL-2R beta 88), lacked the ability to co-precipitate this tyrosine kinase activity, as measured by phosphorylation of IL-2R beta in vitro. Both of these mutants also failed to transduce growth-promoting signals in response to IL-2 in vivo. Analysis of the IL-2R beta 88 mutant receptor suggested that a second protein kinase mediating phosphorylation on serine and threonine residues physically interacts with the carboxyl terminus of IL-2R beta. This kinase may be necessary but, alone, appears to be insufficient to support a full IL-2-induced proliferative response. These studies highlight the physical association of protein kinases with the cytoplasmic domain of IL-2R beta and their likely role in IL-2-induced growth signaling mediated through the multimeric high affinity IL-2R complex.  相似文献   

20.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号