首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver daunorubicin reductase. An aldo-keto reductase   总被引:3,自引:0,他引:3  
  相似文献   

2.
Approximately 15% of the total nitrite reductase of crude homogenates of wheat roots applied to sucrose gradients was separated with an organelle whose isopycnic density was about 1.22 g·cm−3. The activity recovered in the supernatant was thought to be particulate in origin, because similar ratios of activity of isoenzyme 1 and 2 of nitrite reductase were found in both particulate and supernatant fractions. The particle with nitrite reductase activity also contained glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, triose phosphate isomerase and NADPH diaphorase. This root particle and whole chloroplasts from leaves had a similar isopycnic density as well as these enzymes, and thus the data suggest that the root particle may be a proplastid.

Nitrate reductase was found only in the supernatant and it was not associated with any of the root organelles.

Mitochondria from wheat roots had an equilibrium density of 1.18 g·cm−3 and contained both NAD and NADP glutamate dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, triosephosphate isomerase and NADPH diaphorase but not nitrite reductase. Microbodies of wheat roots had an equilibrium density of about 1.20 g·cm−3 on the sucrose gradient and contained catalase and glycollate oxidase.  相似文献   


3.
Phospholipid peroxidation of isolated rat liver inner mitochondrial membranes induced by either ascorbate or cysteine was accompanied by a release of flavins and coenzyme Q. A straight correlation between this release and the alteration of molecular species of phosphatidylcholine and phosphatidylethanolamine containing one saturated and one unsaturated fatty acid has been found. Peroxidation induced on molecular species of phosphatidylcholine and phosphatidylethanolamine containing only unsaturated fatty acids were accompanied by losses in enzyme activities of NADH-cytochrome c reductase and succinate cytochrome c reductase.  相似文献   

4.
The rate of reduction of cytochrome P450 in hepatic microsomes in the presence of NADPH has been measured with a dual wavelength stopped-flow spectrophotometer. The results obtained, with microsomes prepared from phenobarbital-pretreated rats, indicate that the reduction process is biphasic and most probably composed of two concurrent first-order reactions. The rate constant for the reduction of cytochrome P450 in the fast phase in the presence of ethylmorphine is 1.74 s?1. Since approximately 50% or more of the cytochrome P450 is reduced in the fast phase under these conditions, the rate of reduction of cytochrome P450 is approximately 150 nmol min?1 (mg of protein)?1. Under similar conditions the rate of ethylmorphine N-demethylation is 8.6 nmol min?1 (mg of protein)?1. Thus the rate-limiting step in ethylmorphine N-demethylation cannot be the introduction of the first electron into cytochrome P450 by NADPH-cytochrome P450 reductase.  相似文献   

5.
Reconstitution of succinate-Q reductase is achieved by admixing soluble succinate dehydrogenase (SDH) and ubiquinone-protein-S (QP-S), a new protein isolated from the soluble cytochrome b-c1 complex. The reconstituted reductase catalyzes reduction of Q by succinate. The reaction is fully sensitive to thenoyltrifluoroacetone. The reconstituted reductase (same as succinate-cytochrome c reductase or submitochondrial particles) does not show “low concentration ferricyanide reductase activity” as soluble dehydrogenase does. In other words, this enzymic site on SDH is occupied by QP-S. When an artificial dye, such as phenazine methosulfate or Wurster's Blue, is used as electron acceptor the rate of oxidation of succinate by SDH is not significantly changed regardless of whether the dehydrogenase is in the free or in the reconstituted succinate-Q reductase forms.  相似文献   

6.
7.
The initial reaction of tetrapyrrole formation in archaea is catalyzed by a NADPH-dependent glutamyl-tRNA reductase (GluTR). The hemA gene encoding GluTR was cloned from the extremely thermophilic archaeon Methanopyrus kandleri and overexpressed in Escherichia coli. Purified recombinant GluTR is a tetrameric enzyme with a native M(r) = 190,000 +/- 10,000. Using a newly established enzyme assay, a specific activity of 0.75 nmol h(-1) mg(-1) at 56 degrees C with E. coli glutamyl-tRNA as substrate was measured. A temperature optimum of 90 degrees C and a pH optimum of 8.1 were determined. Neither heme cofactor, nor flavin, nor metal ions were required for GluTR catalysis. Heavy metal compounds, Zn(2+), and heme inhibited the enzyme. GluTR inhibition by the newly synthesized inhibitor glutamycin, whose structure is similar to the 3' end of the glutamyl-tRNA substrate, revealed the importance of an intact chemical bond between glutamate and tRNA(Glu) for substrate recognition. The absolute requirement for NADPH in the reaction of GluTR was demonstrated using four NADPH analogues. Chemical modification and site-directed mutagenesis studies indicated that a single cysteinyl residue and a single histidinyl residue were important for catalysis. It was concluded that during GluTR catalysis the highly reactive sulfhydryl group of Cys-48 acts as a nucleophile attacking the alpha-carbonyl group of tRNA-bound glutamate with the formation of an enzyme-localized thioester intermediate and the concomitant release of tRNA(Glu). In the presence of NADPH, direct hydride transfer to enzyme-bound glutamate, possibly facilitated by His-84, leads to glutamate-1-semialdehyde formation. In the absence of NADPH, a newly discovered esterase activity of GluTR hydrolyzes the highly reactive thioester of tRNA(Glu) to release glutamate.  相似文献   

8.
9.
The intracellular location of nitrate and nitrite reductase was determined by extraction and isolation of organelles from spinach and tobacco leaves using sucrose based extraction media and isopycnic sucrose density gradient centrifugation. Nitrite reductase was located in the chloroplasts and nitrate reductase in the cytosol. With certain extraction media, nitrate reductase was found to be associated with all organelles but especially with the broken chloroplasts. This scattered and variable distribution was attributed to indiscriminate adsorption of nitrate reductase by all organelles, since bovine serum albumin eliminated this phenomenon. A low activity of nitrate reductase in crude homogenates or the supernatant fraction of tobacco leaves was due to a heat-stable, small molecular weight inhibitor. Neither soluble or insoluble polyvinylpyrollidone nor sulfhydryl reagents protected nitrate reductase from the inhibitor.  相似文献   

10.
Knapp KG  Swartz JR 《FEBS letters》2004,559(1-3):66-70
Escherichia coli thioredoxin reductase (TR) and glutathione reductase (GR) are dimeric proteins that require a flavin adenine dinucleotide (FAD) cofactor for activity. A cell-free protein synthesis (CFPS) reaction supplemented with FAD was used to produce TR at 760 microg/ml with 89% of the protein being soluble. GR accumulated to 521 microg/ml in a cell-free reaction with 71% solubility. The TR produced was fully active with a specific activity of 1390 min(-1). The GR had a specific activity of 139 U/mg, which is significantly more active than reported for GR purified from cells. The specific activity for both TR and GR decreased without FAD supplementation. This research demonstrates that CFPS can be used to produce enzymes that are multimeric and require a cofactor.  相似文献   

11.
The reduction of p-nitroso-N-dimethylaniline, p-nitroso-N-diethylaniline, p-nitrosophenol and p-nitroso-N-phenylaniline with NADPH in the presence of aldehyde reductases 1 and 2 is described. The reactivity of these nitroso substrates is increased by hydrophobic substituents and those promoting OH- elimination from the molecule of the reduced substrate. NN-Dimethylbenzoquinonedi-iminium cation was proved to be the reaction product formed from p-nitroso-N-dimethylaniline. The kinetics of the reduction of p-nitroso-N-dimethylaniline catalysed with aldehyde reductase 1 are rather complex at pH 7, and the preferred-pathway mechanism is probably involved. The reaction sequence approaches the ordered pattern at pH 8.5. It was shown that NADPH in equilibrium NADP+ recyclization proceeds in the presence of NADP+, p-nitroso-N-dimethylaniline, cyclohexanol and aldehyde reductase 1, the alcohol oxidation being the slowest step in this reaction. However, the rate of cyclohexanol oxidation surpasses that of the dissociation of NADPH from the enzyme.  相似文献   

12.
Ammonia is a physiological uncoupler of photophosphorylation which drastically inhibits the photosynthetic reduction of nitrate by Nostoc muscorum particles by promoting the conversion of ferredoxin-nitrate reductase into its reduced inactive form. Ammonia promotes also, after an initial stimulation, the total inhibition of the photosynthetic reduction of NADP+. Like its nitrate counterpart, ferredoxin-NADP reductase is reversibly inactivated by reduction and reactivated by oxidation.  相似文献   

13.
14.
The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed.  相似文献   

15.
Inhibitors of ribonucleotide reductase are potential antiproliferative agents, since they deplete cells from DNA precursors. Substrate nucleoside analogues, carrying azido groups at the base moiety, are shown to have strong cytostatic properties, as measured by the inhibition of the incorporation of thymidine into DNA. One compound, 8-azidoadenosine, inhibits CDP reduction in cytosolic extracts from cancer cells. The corresponding diphosphate behaves as a substrate for ribonucleotide reductase while the triphosphate is an allosteric effector.  相似文献   

16.
Maleylacetate reductase from Trichosporon cutaneum.   总被引:10,自引:0,他引:10       下载免费PDF全文
The enzyme catalysing the reduction of maleylacetate to 3-oxoadipate was purified 150-fold from Trichosporon cutaneum, induced for aromatic metabolisms by growth with resorcinol as a major carbon source. The enzyme separated upon electrofocusing into three species with PI values 4.6, 5.1 and 5.6. They had similar catalytic properties and the same molecular weight.  相似文献   

17.
18.
19.
Lysine-ketoglutarate reductase (saccharopine dehydrogenase (NADP+, lysine-forming) EC 1.5.1.8) from human liver has been partially purified and characterized. A spectrophotometric assay is described. The Michaelis constants have been determined for lysine (1.5-10-3 M), alpha-ketoglutarate (1-10-3 M) and NADPH (8-10-5 M). The pH optimum is 7.8. The enzyme is product inhibited. The specificity of the enzyme, response to inhibitors, pH and thermal stability are reported. Lysine-ketoglutarate reductase is present in high concentration in liver and heart, to a lesser degree in kidney and skin and in trace amounts in several other tissues. Saccharopine dehydrogenase (saccharopine dehydrogenase (NAD+, L-glutamate-forming) EC 1.5.1.9) was demonstrable only in liver and kidney. Lysine-ketoglutarate reductase reacts effectively with delta-hydroxylysine.  相似文献   

20.
Mammalian thioredoxin reductases contain a TGA-encoded C-terminal penultimate selenocysteine (Sec) residue, and show little homology to bacterial, yeast, and plant thioredoxin reductases. Here we show that the nematode, Caenorhabditis elegans, contains two homologs related to the mammalian thioredoxin reductase family. The gene for one of these homologs contains a cysteine codon in place of TGA, and its product, designated TR-S, was previously suggested to function as thioredoxin reductase. The other gene contains TGA and its product is designated TR-Se. This Sec-containing thioredoxin reductase lacks a canonical Sec insertion sequence element in the 3'-untranslated area of the gene. TR-Se shows greater sequence similarity to mammalian thioredoxin reductase isozymes TR1 and TR2, whereas TR-S is more similar to TR3. TR-Se was identified as a thioredoxin reductase selenoprotein by labeling C. elegans with 75Se and characterizing the resulting 75Se-labeled protein by affinity and other column chromatography and gel-electrophoresis. TR-Se was expressed in Escherichia coli as a selenoprotein when a bacterial SECIS element was introduced downstream of the Sec TGA codon. The data show that TR-Se is the major naturally occurring selenoprotein in C. elegans, and suggest an important role for selenium and the thioredoxin system in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号