首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The specific activities of pyruvate kinase and phosphofructokinase but not lactate dehydrogenase increase as P-815 mastocytoma cells approach the stationary phase. During this growth period, the rates of uptake of labelled precursors into DNA, RNA and total protein decreases. On the other hand, the pyruvate kinase protein level changes in parallel with activity. Although the K-isozyme is the primary form of pyruvate kinase expressed, some M-type subunit is also present and both forms undergo an increase in specific activity. In addition, pyruvate kinase expression is also elevated by adding cAMP analogues with theophylline, butyrate or conditioned media. This increased level of expression is hypothesized to be a secondary event associated with a differentiation-like-induced expression of the mast cell phenotype.  相似文献   

2.
3.
NADH-specific dihydropteridine reductase [EC 1.6.99.7] was purified from mouse mastocytoma P-815 cells. Km values for NADH and NADPH were determined to be 1.4 microM and 32 microM, respectively, using tetrahydro-6-methylpterin. Molecular weight was 50,000, and subunit molecular weight was 25,000. The enzymes from P-815 and liver of host mouse (DBA/2) showed similar electrophoretic mobility on polyacrylamide gel. The P-815 enzyme reacted with antiserum against bovine liver NADH-specific dihydropteridine reductase, forming a single precipitin line.  相似文献   

4.
Cultured mouse mastocytoma P-815 cells were treated with 1 mM sodium n-butyrate for 40 h. The treated cell homogenate showed high activities in synthesizing prostaglandin D2, E2, and F2 alpha. Such activities were virtually absent in untreated cell homogenate. Direct addition of sodium n-butyrate to the homogenate showed no effects. Pre-exposure of cells to acetylsalicylic acid did not diminish the effect of the subsequent treatment with sodium n-butyrate. These data suggest that sodium n-butyrate induces fatty acid cyclooxygenase in P-815 cells.  相似文献   

5.
Dexamethasone at a concentration as low as 10 nM significantly increased both the histamine content and histidine decarboxylase activity of cultured mastocytoma P-815 cells. Both effects were clearly seen using several glucocorticoids, which were as effective as dexamethasone. In contrast to that of histamine, the serotonin level of mastocytoma P-815 cells was decreased by treatment with dexamethasone. The dexamethasone-induced increases in histamine content and histidine decarboxylase activity were completely suppressed by the addition of cycloheximide and actinomycin D. Mastocytoma P-815 cells were found to possess binding sites for [3H]dexamethasone in the cytosol (Kd = 15.7 nM) and the nuclei (Kd = 1.26 nM). These results show that glucocorticoids significantly stimulate de novo synthesis of histidine decarboxylase.  相似文献   

6.
Histidine decarboxylase was purified from mouse mastocytoma P-815 cells to electrophoretic homogeneity by ammonium sulfate fractionation, dialyses at pH 7.5 and 6.0, chromatographies on DEAE-Sepharose CL-6B, Phenyl-Sepharose CL-4B and Hydroxylapatite, Phenyl-Superose HPLC, Mono Q HPLC, and Diol-200 gel filtration HPLC. Under the assay conditions used, the pure enzyme exhibited a specific activity of 800 nmol/min/mg, which constituted 12,500-fold purification compared to the crude extract, with a 7% yield. The two-step dialysis turned out to be essential for removing the factor(s) which interfered with the enzyme purification. The optimum pH for the enzyme reaction was 6.6 and the isoelectric point of the enzyme was pH 5.4. The molecular mass of the enzyme was found to be approximately 53 kDa on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, 110 kDa on gel filtration, and 115 kDa on polyacrylamide gradient gel electrophoresis in the absence of sodium dodecyl sulfate. The Km value for histidine was estimated to be 0.26 mM at pH 6.8.  相似文献   

7.
The ethanolamine-containing glycerophospholipids, choline-containing glycerophospholipids, and phosphatidylinositol fractions are major sources of arachidonic acid in murine mastocytoma P-815 cloned cells. The choline-linked fraction contained high arachidonic acid contents in 1-O-alkyl-2-acyl- (18%) and 1,2-diacyl-sn-glycero-3-phosphocholine (11%), with smaller amounts in 1-O-alk-1'-enyl-2-acyl species, whereas the arachidonic acid content of the ethanolamine-linked fraction was high in 1-O-alk-1'-enyl-2-acyl (26%) and 1,2-diacyl species (15%) and low in 1-O-alkyl-2-acyl species. The uptake and transfer of [3H]arachidonic acid into the 1,2-diacyl and ether classes of choline-containing glycerophospholipids and ethanolamine-containing glycerophospholipids in mastocytoma cells were examined. There was very rapid incorporation of radioactive arachidonic acid into mastocytoma cells that leveled off after 30 min. By labeling cells with [3H]arachidonic acid for 7.5 min, the radioactivity was recovered in the choline-containing glycerophospholipids (43%), phosphatidylinositol (32%), and ethanolamine-containing glycerophospholipids (20%) with little in other phospholipids, neutral lipid, or free fatty acid fractions. Upon reincubation of the mastocytoma cells in the radiolabel-free medium, the [3H]arachidonate radioactivity was gradually lost from the choline-containing glycerophospholipids fraction and, concomitantly, increased in ethanolamine-containing glycerophospholipids. At the zero time of reincubation, most of the radioactivity was recovered in the 1,2-diacyl species of both choline-containing glycerophospholipids and ethanolamine-containing glycerophospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have characterized a soluble pertussis toxin (PT)-sensitive GTP-binding protein (G-protein) present in mouse mastocytoma P-815 cells. 65% of total ADP-ribosylation of PT substrate having a molecular mass of 40 kDa on SDS-polyacrylamide gel electrophoresis in cell homogenate was detected in the supernatant after centrifugation at 100,000 x g for 90 min. [32P]ADP-ribosylation of cytosolic PT substrate was significantly enhanced on the addition of exogenous beta gamma complex. The molecular mass of the cytosolic PT substrate was estimated to be about 80 kDa on an Ultrogel AcA 44 column, but the beta gamma complex was not detected in the cytosol by using the anti-beta gamma complex antibody. Furthermore, the cytosolic PT substrate was found to have some unique properties: [35S]GTP gamma S binding was not inhibited by GDP and [32P]ADP-ribosylation was not affected by GTP gamma S treatment. Only after the cytosolic PT substrate had been mixed with exogenous beta gamma complex, did it copurify with exogenous beta gamma complex by several column chromatographies including an Octyl-Sepharose CL-4B column. The PT substrate was identified as Gi2 alpha by Western blot analysis and peptide mapping with S. aureus V8 protease. These results suggest that Gi2 alpha without beta gamma complex exists with an apparent molecular mass of about 80 kDa in the cytosolic fraction of P-815 cells.  相似文献   

9.
Cloned mastocytoma P-815, 2-E-6 cells were used to investigate regulation of 5-lipoxygenase activity. 2-E-6 cells had high 5-lipoxygenase activity with slight 12-lipoxygenase activity. The 5-lipoxygenase activity was increased over 5-fold by treatment of the cells with 1 mM n-butyrate for 18 h. the most effective dose range being 0.1-5.0 mM. Treatment with n-butyrate for 18 h was more effective than treatment for 40 h. Addition of n-butyrate to an untreated cell homogenate had no stimulatory effect. The enhancement of 5-lipoxygenase activity by n-butyrate was accompanied by new synthesis of protein(s). 12-Lipoxygenase activity was not increased so much as 5-lipoxygenase activity by the treatment. This is the first report of stimulation of 5-lipoxygenase activity in cultured cells. The different responses of the two lipoxygenases to n-butyrate treatment strongly suggest that 5-lipoxygenase is a different enzyme from 12-lipoxygenase.  相似文献   

10.
The primary structure of L-histidine decarboxylase (HDC: L-histidine carboxy-lyase, EC 4.1.1.22) from mouse mastocytoma P-815 cells has been determined by parallel analysis of the amino acid sequence of the protein and the nucleotide sequence of the corresponding cDNA. HDC contains 662 amino acid residues with a molecular mass of 74017, which is larger by about 21,000 Da than that of the previously purified HDC subunit (53 kDa), suggesting that HDC might be posttranslationally processed. The HDC cDNA hybridized to a 2.7 kilobase mRNA of mastocytoma cells. Homology was found between the sequences of mouse mastocytoma HDC and fetal rat liver HDC.  相似文献   

11.
The possibility was examined that inhibition of growth of PY815 mouse mastocytoma cells by N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (DB cyclic AMP) results from inhibition of c-myc gene expression. Temporary increases in c-myc RNA which occurred soon after DB cyclic AMP treatment and upon removal of the drug were not consistent with direct inhibition of c-myc gene expression by DB cyclic AMP. The increases in c-myc RNA coincided with the passage through, or accumulation of cells in late G1-early S phase. It is proposed that cyclic AMP may stimulate c-myc gene expression which normally occurs only in late G1-early S phase in PY815 cells and that cyclic AMP prevents c-myc expression in cells at other phases of the cell cycle by inhibiting their progression past a cyclic AMP-sensitive restriction point in early G1 phase.  相似文献   

12.
Nuclei from K21 murine mastocytoma cells do not form topoisomerase II-DNA adducts in response to amsacrine in the absence of a cytoplasmic factor tentatively identified as a type of casein kinase (Darkin, S.J. and Ralph, R.K. (1991) Biochim. Biophys. Acta 1088, 285-291). The stimulatory activity was present in extracts from cells grown in horse serum but not in calf serum. Activity was lost following growth arrest by serum deprivation. In contrast, topoisomerase II activity in isolated nuclei did not decline during growth arrest. These results suggest that the resistance of some non-cycling tumour cells to anti-cancer drugs may result from decreased activation of topoisomerase II.  相似文献   

13.
Prostaglandin E1 (PGE1) receptors from mouse mastocytoma P-815 cells were found to bind to a wheat germ agglutinin (WGA)-Agarose column, suggesting that the receptors are glycoproteins. To further elucidate the role of carbohydrate moieties in the PGE1 receptors for their binding activity to ligand, the P-815 cells were treated with tunicamycin, swainsonine or monensin. Tunicamycin, an inhibitor of N-glycosylation, dose- and time-dependently inhibited the binding of PGE1 to mastocytoma P-815 cells. Neither swainsonine, an inhibitor of Golgi mannosidase II, nor monensin, an inhibitor of processing beyond the high mannose stage, altered PGE1 binding properties of the cells. The inhibition of PGE1 binding by tunicamycin was observed when incorporation of [3H]glucosamine into macromolecules was inhibited. The inhibitory effect was not on their affinity but on their number of binding sites. Subcellular distributions of [3H]PGE1-binding activity showed that decreases in the binding activity by tunicamycin were highest in plasma membrane fractions. Treatment of membranes with various endo- and exoglycosidases did not affect PGE1 binding. PGE1-stimulated cyclic AMP accumulation in the cells was also inhibited by tunicamycin. These results suggest that PGE1 receptors of mastocytoma P-815 cells are glycoproteins and that inhibition of N-glycosylation of PGE1 receptors by tunicamycin results in the arrest of the translocation of newly synthesized receptors to the surface of mastocytoma P-815 cells.  相似文献   

14.
Cloned mouse mastocytoma P-815.2-E-6 cells are barely able to synthesize prostaglandins because of a lack of prostaglandin endoperoxide synthase activity. However, the addition of sodium n-butyrate at 1 mM induces synthesis de novo of prostaglandins in this cell line. Employing this system, we could isolate an mRNA for prostaglandin endoperoxide synthase by a combination of cell-free translation and immunoprecipitation. The antibody, prepared in rabbit by injecting purified prostaglandin endoperoxide synthase from bovine vesicular gland, was shown to cross-react with the corresponding enzyme from 2-E-6 cells. The poly(A)-containing mRNA has a sedimentation coefficient of 17S and codes for a single polypeptide chain of Mr 62 000 as estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The Mr of the mouse polypeptide chain appears very similar to that of the purified carbohydrate-free prostaglandin endoperoxide synthase from sheep vesicular gland. These findings are a contribution to the isolation of the gene for prostaglandin endoperoxide synthase.  相似文献   

15.
The stable [3H]prostaglandin E1 (PGE1)-bound receptor, which couples to 60 kDa GTP-binding protein, from membranes of mouse mastocytoma P-815 cells has been purified and characterized. When the membranes were preincubated with [3H]PGE1 for 60 min at 37 degrees C, the dissociation of the ligand from the receptor was remarkably decreased, even in the presence of GTP gamma S. The stable [3H]PGE1-bound receptor complex was solubilized with 6% digitonin. The solubilized [3H]PGE1 receptor was eluted with [35S]GTP gamma S bindings activity from an Ultrogel AcA44 column. The fractions containing activities of both [3H]PGE1 and [35S]GTP gamma S bindings were further purified by column chromatographies on wheat germ agglutinin (WGA)-agarose and phenyl-Sepharose CL-4B. The partially purified [3H]PGE1-bound receptor was affinity-labeled with [14C]5'-p-fluorosulfonylbenzoylguanosine and a protein with a molecular mass of 60 kDa was detected. These results suggest that the ligand-bound PGE1 receptor of P-815 cells associates with a novel GTP-binding protein with a molecular mass of 60 kDa.  相似文献   

16.
Recently, we reported that in mouse mastocytoma P-815 cells the cytosol contains some factor(s) which promotes the release of GTP-activated Gi2 alpha from the membrane, and that thrombin induces the translocation of Gi2 alpha from the membrane to the cytosol (Takahashi, S., Negishi, M. and Ichikawa, A. (1991) J. Biol. Chem. 266, 5367-5370). Here we investigated the mechanism underlying the thrombin-induced translocation of Gi2 alpha in mastocytoma cells. Thrombin induced a rapid and transient increase in the intracellular Ca2+ concentration ([Ca2+]i) within 1 min, attenuated pertussis toxin-catalyzed ADP-ribosylation of Gi2 in the membrane, and caused the subsequent translocation of Gi2 alpha. Thrombin induced the translocation of protein kinase C from the cytosol to the membrane, and a protein kinase C inhibitor, staurosporine, completely inhibited the thrombin-induced translocation of Gi2 alpha. When cells were treated with thrombin, the ability of the cytosol to release Gi2 alpha from the membrane in the presence of GTP gamma S markedly increased. This stimulatory effect of thrombin on the ability of the cytosol was mimicked by 12-O-tetradecanoylphorbol 13-acetate (TPA), but not by the Ca2+ ionophore, ionomycin. The thrombin- and TPA-induced potentiation of the ability of the cytosol to release Gi2 alpha was completely abolished by staurosporine. Furthermore, phosphorylation of the cytosol by protein kinase C markedly potentiated the ability of the cytosol to release Gi2 alpha. These results together demonstrate that the thrombin-induced translocation of Gi2 alpha is due to enhancement of the ability of the cytosol to release Gi2 alpha via activation of protein kinase C.  相似文献   

17.
P-815 mouse mastocytoma cells express the K isozyme of pyruvate kinase and the specific activity of this enzyme is increased in response to N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate, 8-bromoadenosine 3':5'-cyclic monophosphate, cholera toxin, and epinephrine, all of which also elevate the intracellular concentration of adenosine 3':5'-cyclic monophosphate. Prostaglandin F2 alpha also increases the cellular activity of this enzyme, but does not increase the adenosine 3':5'-cyclic monophosphate levels. Under all these conditions, the increase in enzymatic activity is accompanied by an equivalent increase in the pyruvate kinase protein level. However, neither the rate of enzyme synthesis nor the level of pyruvate kinase mRNA is elevated by N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate. On the other hand, it does increase the enzyme's half-life. In contrast, prostaglandin F2 alpha increases the rate of synthesis and the level of pyruvate kinase K mRNA, but has no influence on the rate of degradation. Therefore, these cells have two mechanisms which increase pyruvate kinase K levels. One operates via an increase in cAMP level and results in a decrease in the rate of degradation, whereas the other minimizes an upsurge in cAMP levels but still increases pyruvate kinase K activity by increasing its rate of synthesis.  相似文献   

18.
19.
DNA chain growing during semiconservative replication was studied using both in vitro systems described in the preceding paper (preceding paper, ref 1) 3H-Labeled, 4-S Okazaki fragments synthesized in vivo just prior to permeabilization or lysis with Brij-58 were metabolically stable and quantitatively chased into high molecular weight DNA (20--100 S) during a subsequent incubation in vitro. Thus, DNA replication continued in vitro at the same growing points that were active in vivo. After a 20-s pulse at 30 degress C in vitro, more than 50% of incorporated radioactivity was found in the 4 S region of alkaline sucrose gradients suggesting a totally discontinuous mode of DNA chain growth. If the pulse were followed by a 1-min chase, 4-S molecules were converted into 6--12-S intermediates which upon continued incubation were joined with growing 20--100-S molecules (replicon-sized chains). Formation of all three classes of replicative intermediates, Okazaki fragments, 6--12-S intermediates, and 20--100-S molecules, occurred in vitro at least during the first 20 min. During this time, average rates of DNA chain growth and overall DNA synthesis were reduced to about the same extent, if compared to rates of intact cells. Thus, reduced chain growth rates appear to reflect primary deficiences of our in vitro systems, while initiation of replicative intermediates still occurs.  相似文献   

20.
The prostacyclin (PGI2) analogues, TEI-9063 and its methyl ester, TEI-1324, have been compared with another stable analogue, iloprost, with respect to binding to the PGI2 receptor, stimulation of adenylate cyclase activity and inhibition of thrombin-induced Ca2+ mobilization in mastocytoma P-815 cells. TEI-9063 displaced the [3H]iloprost binding to the membrane fraction, the IC50 value being 3 nM, but showed very low affinity for the PGE receptor. TEI-9063 dose dependently stimulated cAMP formation in the cells and GTP-dependent adenylate cyclase activity in the membrane fraction, the EC50 value being 50 and 10 nM, respectively. Furthermore, TEI-9063 prevented the thrombin-induced increase in the intracellular Ca2+ concentration, the IC50 value being 50 nM. These IC50 and EC50 values are lower than those obtained for iloprost. On the other hand, those of TEI-1324 were about two-orders higher. Although PGI2 lost its ability to stimulate cAMP formation by preincubation for 20 min at 37 degrees C, TEI-9063 completely retained its ability after 60-min preincubation. These results demonstrate that TEI-9063 is a stable and stronger agonist for the PGI2 receptor than iloprost, and that it prevents thrombin-induced Ca2+ mobilization through stimulation of the adenylate cyclase system in mastocytoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号