首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The acclimation of the photosynthetic apparatus of Palmaria palmata (L.) to light intensity was examined in the field and under laboratory conditions. Algae from 3 different shore levels and from laboratory cultures adapted to 6 different photon flux densities were compared. This was done on the basis of light doses, which were delivered by different light regimes in the field and in the laboratory. Laboratory samples were adjusted to constant photon flux densities between 7 and 569 μmol photons·m ? 2·s ? 1 in a 16:8 light:dark photoperiod. Under field conditions the daily amplitudes reached up to approximately 2000 μmol photons·m ? 2·s ? 1 within a natural daily light course. Over the course of 14 days the light doses resulting from those different regimes are similar for both treatments. An increasing growth rate per day with increasing light doses was observed in the laboratory. Growth was saturated at 113 mol photons·m ? 2·14 d ? 1. Light saturation points (Ek) of photosynthesis increased with increasing light doses for both field and laboratory samples, and all Ek values were significantly related to the growth light dose. A correlation between fresh weight‐related lutein content and growth light dose was found for laboratory samples only, whereas the lutein:chlorophyll a (chl a) ratio was strongly correlated with Ek for laboratory and field samples. The content of chl a and phycoerythrin (PE) per fresh weight decreased significantly with increasing light doses under field conditions. Simultaneously, the PE:chl a ratio increased, whereas this ratio was not influenced by laboratory treatments. The correspondence of Ek values for field and laboratory treatments indicated that they were affected mainly by light dose. However, the variability in pigmentation was mainly dependent on temporal variability in light intensity (the amplitude of variations in incident light).  相似文献   

2.
The dependence of the carbon concentrating mechanism of Palmaria palmata (L.) Kuntze on the growth light level was examined 1) to determine whether or not there is a threshold photon flux density (PFD) at which the inorganic carbon uptake mechanism can operate and 2) to attempt to quantify the relative energetic costs of acclimation to the two different limiting factors, PFD and dissolved inorganic carbon (DIC) concentration. Plants were grown at six PFDs: 5, 25, 50, 75, 95, and 125 μmol photons. m?2.s?1. Growth rates increased with increasing PFD from 5 to 50 μmol photons. m?2. s?1 and were light-saturated at 75, 95, and 125 μmol photons. m?2. s?1 Values of δ13C increased continuously with increasing growth PFD and did not saturate over the range of light levels tested. Time-resolved fluorescence characteristics indicated a progressive photoacclimation below 50 μmol photons. m?2. s?1. Analysis of chlorophyll fluorescence induction showed three levels of light use efficirncy associated with growth at 5 or 25, 50, and >75 μmol photons. m?2. s?1. The light-haruesting efficiency was inversely proportional to the effectiveness of DIC acquisition in plants grown at the six PFDs. These data were interpreted to indicate that there is a physiological tradeoff between photosynthetic efficiency and bicarbonate use in this species.  相似文献   

3.
The influence of seasonally fluctuating photoperiods on the photosynthetic apparatus of Palmaria decipiens (Reinsch) Ricker was studied in a year‐round culture experiment. The optimal quantum yield (Fv/Fm) and the maximal relative electron transport rate (ETRmax), measured by in vivo chl fluorescence and pigment content, were determined monthly. During darkness, an initial increase in pigment content was observed. After 3 months in darkness, ETRmax and Fv/Fm started to decrease considerably. After 4 months in darkness, degradation of the light‐harvesting antennae, the phycobilisomes, began, and 1 month later the light harvesting complex I and/or the reaction centers of PSII and/or PSI degraded. Pigment content and photosynthetic performance were at their minimum at the end of the 6‐month dark period. Within 24 h after re‐illumination, P. decipiens started to accumulate chl a and to photosynthesize. The phycobiliprotein accumulation began after a time lag of about 7 days. Palmaria decipiens reached ETRmax values comparable with the values before darkness 7 days after re‐illumination and maximal values after 30 days of re‐illumination. Over the summer, P. decipiens reduced its photosynthetic performance and pigment content, probably to avoid photodamage caused by excess light energy. The data show that P. decipiens is able to adapt to the short period of favorable light conditions and to the darkness experienced in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号