首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal exopeptidase that sequentially removes tripeptides from the N termini of polypeptides and shows a minor endoprotease activity. Mutations in TPP I lead to classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease. TPP I proenzyme is converted in lysosomes into a mature enzyme with the assistance of another protease and is able to autoactivate in acidic pH in vitro via a unimolecular mechanism. Because autoactivation in vitro at the pH values reported for lysosomes generated inactive enzyme, we intended to determine whether physiologically relevant factors can modify this process to also make it plausible in vivo. Here, we report that high ionic strength and glycosaminoglycans (GAGs) increase yields (ionic strength) or yields and rates (GAGs) of activation, enhance degradation of liberated TPP I prosegment fragments, and switch effective autoactivation of TPP I proenzyme toward less acidic pH values (up to pH 6.0). Although ionic strength and GAGs also inhibited TPP I activity in vitro and in living cells, the degree of inhibition (from 20 to 60%) appears to be of rather limited functional significance. Importantly, binding to GAGs improved thermal stability of TPP I and protected the enzyme against alkaline pH-induced denaturation in vitro (t((1/2)) of mature enzyme at pH 7.4 increased by approximately 8-fold in the presence of heparin) and in vivo ( approximately 2-fold higher loss of TPP I in cells deficient in GAGs than in control cells after bafilomycin A1 treatment). These findings elucidate a potent physiologically relevant mechanism of TPP I regulation by GAGs and suggest that generation of the active enzyme via autoactivation can be accomplished not only in vitro but in vivo as well.  相似文献   

2.
Human tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal serine protease that removes tripeptides from the free N termini of small polypeptides and also shows a minor endoprotease activity. Due to various naturally occurring mutations, an inherited deficiency of TPP I activity causes a fatal lysosomal storage disorder, classic late infantile neuronal ceroid lipofuscinosis (CLN2). In the present study, we analyzed biosynthesis, glycosylation, transport, and proteolytic processing of this enzyme in stably transfected Chinese hamster ovary cells as well as maturation of the endocytosed proenzyme in CLN2 lymphoblasts, fibroblasts, and N2a cells. Human TPP I was initially identified as a single precursor polypeptide of approximately 68 kDa, which, within a few hours, was converted to the mature enzyme of approximately 48 kDa. Compounds affecting the pH of intracellular acidic compartments, those interfering with the intracellular vesicular transport as well as inhibition of the fusion between late endosomes and lysosomes by temperature block or 3-methyladenine, hampered the conversion of TPP I proenzyme into the mature form, suggesting that this process takes place in lysosomal compartments. Digestion of immunoprecipitated TPP I proenzyme with both N-glycosidase F and endoglycosidase H as well as treatment of the cells with tunicamycin reduced the molecular mass of TPP I proenzyme by approximately 10 kDa, which indicates that all five potential N-glycosylation sites in TPP I are utilized. Mature TPP I was found to be partially resistant to endo H treatment; thus, some of its N-linked oligosaccharides are of the complex/hybrid type. Analysis of the effect of various classes of protease inhibitors and mutation of the active site Ser(475) on human TPP I maturation in cultured cells demonstrated that although TPP I zymogen is capable of autoactivation in vitro, a serine protease that is sensitive to AEBSF participates in processing of the proenzyme to the mature, active form in vivo.  相似文献   

3.
O-GlcNAcase is a family 84 beta-N-acetylglucosaminidase catalyzing the hydrolytic cleavage of beta-O-linked 2-acetamido-2-deoxy-d-glycopyranose (O-GlcNAc) from serine and threonine residues of posttranslationally modified proteins. O-GlcNAcases use a double-displacement mechanism involving formation and breakdown of a transient bicyclic oxazoline intermediate. The key catalytic residues of any family 84 enzyme facilitating this reaction, however, are unknown. Two mutants of human O-GlcNAcase, D174A and D175A, were generated since these residues are highly conserved among family 84 glycoside hydrolases. Structure-reactivity studies of the D174A mutant enzyme reveals severely impaired catalytic activity across a broad range of substrates alongside a pH-activity profile consistent with deletion of a key catalytic residue. The D175A mutant enzyme shows a significant decrease in catalytic efficiency with substrates bearing poor leaving groups (up to 3000-fold), while for substates bearing good leading groups the difference is much smaller (7-fold). This mutant enzyme also cleaves thioglycosides with essentially the same catalytic efficiency as the wild-type enzyme. As well, addition of azide as an exogenous nucleophile increases the activity of this enzyme toward a substrate bearing an excellent leaving group. Together, these results allow unambiguous assignment of Asp(174) as the residue that polarizes the 2-acetamido group for attack on the anomeric center and Asp(175) as the residue that functions as the general acid/base catalyst. Therefore, the family 84 glycoside hydrolases use a DD catalytic pair to effect catalysis.  相似文献   

4.
The pH dependence of the enzymic properties of the phosphofructokinase from Escherichia coli was compared to those of two mutants in which one carboxyl group of the active site has been removed from either Asp127 or Asp129. All measurements of activity were made in the presence of allosteric activator ADP or GDP to eliminate any cooperative process. Asp129 is a crucial residue for the activity of phosphofructokinase since its conversion to Ser decreases the catalytic activity by 2-3 orders of magnitude in both the forward and reverse reactions, but the ionization of Asp129 is not directly related the pH dependence of phosphofructokinase activity. This pH dependence is however modified by the Asp129----Ser mutation, which decreases the pK of another residue, Asp127, by as much as pH of 1.5. The side chain of Asp127 has the catalytic role proposed earlier: its deprotonated form acts as a base in the forward reaction, and its protonated form acts as an acid in the reverse reaction. The protonated form of Asp127 is also required for the binding of fructose 1,6-bisphosphate. The electrostatic interaction between the carboxyl groups of Asp127 and Asp129 seems different in free phosphofructokinase to that in enzyme/substrate complexes, suggesting that a conformational change occurs upon substrate binding. The pH dependence of phosphofructokinase activity involves one other ionizable group with a pK of approximately 6 which does not belong to the side chains of Asp127 or Asp129.  相似文献   

5.
We purified tripeptidyl peptidase I (TPP I) to homogeneity from a rat kidney lysosomal fraction and determined its physicochemical properties, including its molecular weight, substrate specificity and partial amino acid sequence. The molecular weight of the enzyme was calculated to be 280,000 and 290,000 by non-denaturing PAGE and gel filtration, respectively, and to be 43 000 and 46 000 on SDS-PAGE in the absence and presence of beta-ME, respectively. These findings suggest that the enzyme is composed of six identical subunits. The Km, Vmax, kcat and kcat/Km values of TPP I at optimal pH (pH 4.0) were 680 microM, 3.7 micromol x mg(-1) x min(-1), 33.1 s(-1) and 4.87 x 10(4) s(-1) x M(-1) for Ala-Ala-Phe-MCA, respectively. TPP I was significantly inhibited by PCMBS and HgCl2, and moderately by DFP. These findings also suggest that TPP I is an exotype serine peptidase that is regulated by SH reagent. TPP I released the tripeptide Arg-Val-Tyr from angiotensin III more rapidly than from Ala-Ala-Phe-MCA, and also released Gly-Asn-Leu from neuromedin B with the same velocity as from Ala-Ala-Phe-MCA. Angiotensin III and neuromedin B have recently been found to be good natural substrates for lysosomal TPP I. Furthermore, we determined the rat liver cDNA structure and deduced the amino acid sequence. The cDNA, designated as lambdaRTI-1, is composed of 2485 bp and encodes 563 amino acids in the coding region. By Northern blot analysis, the order for TPP I mRNA expression was kidney > or = liver > heart > brain > lung > spleen > skeletal muscle and testis. In parallel experiments, the TPP I antigen was detected in various rat tissues by immunohistochemical staining.  相似文献   

6.
Schöttler S  Wende W  Pingoud V  Pingoud A 《Biochemistry》2000,39(51):15895-15900
The monomeric homing endonuclease PI-SceI harbors two catalytic centers which cooperate in the cleavage of the two strands of its extended recognition sequence. Structural and biochemical data suggest that catalytic center I contains Asp218, Asp229, and Lys403, while catalytic center II contains Asp326, Thr341, and Lys301. The analogy with I-CreI, for which the cocrystal structure with the DNA substrate has been determined, suggests that Asp218 and Asp229 in catalytic center I and Asp326 and Thr341 in catalytic center II serve as ligands for Mg(2+), the essential divalent metal ion cofactor which can be replaced by Mn(2+) in vitro. We have carried out a mutational analysis of these presumptive Mg(2+) ligands. The variants carrying an alanine or asparagine substitution bind DNA, but (with the exception of the D229N variant) are inactive in DNA cleavage in the presence of Mg(2+), demonstrating that these residues are important for cleavage. Our finding that the PI-SceI variants carrying single cysteine substitutions at these positions are inactive in the presence of the oxophilic Mg(2+) but active in the presence of the thiophilic Mn(2+) suggests that the amino acid residues at these positions are involved in cofactor binding. From the fact that in the presence of Mn(2+) the D218C and D326C variants are even more active than the wild-type enzyme, it is concluded that Asp218 and Asp326 are the principal Mg(2+) ligands of PI-SceI. On the basis of these findings and the available structural information, a model for the composition of the two Mg(2+) binding sites of PI-SceI is proposed.  相似文献   

7.
Tripeptidyl-peptidase I (TPP I) is a lysosomal serine-carboxyl peptidase that sequentially removes tripeptides from polypeptides. Naturally occurring mutations in TPP I are associated with the classic late infantile neuronal ceroid lipofuscinosis. Human TPP I has five potential N-glycosylation sites at Asn residues 210, 222, 286, 313, and 443. To analyze the role of N-glycosylation in the function of the enzyme, we obliterated each N- glycosylation consensus sequence by substituting Gln for Asn, either individually or in combinations, and expressed mutated cDNAs in Chinese hamster ovary and human embryonic kidney 293 cells. Here, we demonstrate that human TPP I in vivo utilizes all five N-glycosylation sites. Elimination of one of these sites, at Asn-286, dramatically affected the folding of the enzyme. However, in contrast to other misfolded proteins that are retained in the endoplasmic reticulum, only a fraction of misfolded TPP I mutant expressed in Chinese hamster ovary cells, but not in human embryonic kidney 293 cells, was arrested in the ER, whereas its major portion was secreted. Secreted proenzyme formed non-native, interchain disulfide bridges and displayed only residual TPP I activity upon acidification. A small portion of TPP I missing Asn-286-linked glycan reached the lysosome and was processed to an active species; however, it showed low thermal and pH stability. N-Glycans at Asn-210, Asn-222, Asn-313, and Asn-443 contributed slightly to the specific activity of the enzyme and its resistance to alkaline pH-induced inactivation. Phospholabeling experiments revealed that N-glycans at Asn-210 and Asn-286 of TPP I preferentially accept a phosphomannose marker. Thus, a dual role of oligosaccharide at Asn-286 in folding and lysosomal targeting could contribute to the unusual, but cell type-dependent, fate of misfolded TPP I conformer and represent the molecular basis of the disease process in subjects with naturally occurring missense mutation at Asn-286.  相似文献   

8.
Tripeptidyl-peptidase I (TPPI) is an acidic lysosomal peptidase that removes tripeptides from an unmodified N-terminus of small proteins and polypeptides. In humans, TPP I constitutes an integral part of the lysosomal proteolytic apparatus, which, includes numerous hydrolytic enzymes, mostly cysteine proteases (cathepsin B, C, H, K, L, and others), but also serine (cathepsin A) and aspartic (cathepsin D) proteases. The combination of endo- and exopeptidase activities of these enzymes allows for efficient digestion of the diverse proteins transported to the lysosomes, releasing free amino acids and dipeptides that are transported back to the cytoplasm and reused according to the metabolic needs of the cell. The role of TPP I in normal lysosome functioning is underscored by the genetic association of the enzyme with one form of a group of the developmental neurodegenerative disorders of childhood--the neuronal ceroid lipofuscinoses (NCLs). The scope of this article is to review the most recent data, mostly from author's laboratory, on the biology and pathology of TPP I. NCLs are also shortly reviewed with the special emphasis on CLN2 form resulting from mutations in TPP I gene.  相似文献   

9.
Golabek AA  Kida E 《Biological chemistry》2006,387(8):1091-1099
The lysosomal lumen contains numerous acidic hydrolases involved in the degradation of carbohydrates, lipids, proteins, and nucleic acids, which are basic cell components that turn over continuously within the cell and/or are ingested from outside of the cell. Deficiency in almost any of these hydrolases causes accumulation of the undigested material in secondary lysosomes, which manifests itself as a form of lysosomal storage disorder (LSD). Mutations in tripeptidyl-peptidase I (TPP I) underlie the classic late-infantile form of neuronal ceroid lipofuscinoses (CLN2), the most common neurodegenerative disorders of childhood. TPP I is an aminopeptidase with minor endopeptidase activity and Ser475 serving as an active-site nucleophile. The enzyme is synthesized as a highly glycosylated precursor transported by mannose-6-phosphate receptors to lysosomes, where it undergoes proteolytic maturation. This review summarizes recent progress in understanding of TPP I biology and molecular pathology of the CLN2 disease process, including distribution of the enzyme, its biosynthesis, glycosylation, transport and activation, as well as catalytic mechanisms and their potential implications for pathogenesis and treatment of the underlying disease. Promising data from gene and stem cell therapy in laboratory animals raise hope that CLN2 will be the first neurodegenerative LSD for which causative treatment will become available for humans.  相似文献   

10.
Tripeptidyl-peptidase II (TPP II) is a large (Mr>10(6)) tripeptide-releasing enzyme with an active site of the subtilisin-type. Compared with other subtilases, TPP II has a 200 amino-acid insertion between the catalytic Asp44 and His264 residues, and is active as an oligomeric complex. This study demonstrates that the insert is important for the formation of the active high-molecular mass complex. A recombinant human TPP II and a murine TPP II were found to display different complex-forming characteristics when over-expressed in human 293-cells; the human enzyme was mainly in a nonassociated, inactive state whereas the murine enzyme formed active oligomers. This was surprising because native human TPP II is purified from erythrocytes as an active oligomeric complex, and the amino-acid sequences of the human and murine enzymes were 96% identical. Using a combination of chimeras and a single point mutant, the amino acid responsible for this difference was identified as Arg252 in the recombinant human sequence, which corresponds to a glycine in the murine sequence. As Gly252 is conserved in all sequenced variants of TPP II, the recombinant enzyme with Arg252 is atypical. Nevertheless, as Arg252 evidently interferes with complex formation, and this residue is close to the catalytic His264, it may also explain why oligomerization influences enzyme activity. The exact mechanism for how the G252R substitution interferes with complex formation remains to be determined, but will be of importance for the understanding of the unique properties of TPP II.  相似文献   

11.
Because mutations of the ionizable Asp at position 55 of the phosphatidylcholine preferring phospholipase C from Bacillus cereus (PLC(Bc)) to a non-ionizable Asn generate a mutant enzyme (D55N) with 10(4)-fold lower catalytic activity than the wild-type enzyme, we tentatively identified Asp55 as the general base for the enzymatic reaction. To eliminate the alternate possibility that Asp55 is a structurally important amino acid, the X-ray structures of unbound D55N and complexes of D55N with two non-hydrolyzable substrate analogues have been solved and refined to 2.0, 2.0, and 2.3A, respectively. The structures of unbound wild-type PLC(Bc) and a wild-type PLC(Bc)-complex with a non-hydrolyzable substrate analogue do not change significantly as a result of replacing Asp55 with Asn. These observations demonstrate that Asp55 is not critical for the structural integrity of the enzyme and support the hypothesis that Asp55 is the general base in the PLC(Bc)-catalyzed hydrolysis of phospholipids.  相似文献   

12.
Role of the calcium-binding residues Asp231, Asp233, and Asp438 of Bacillus amyloliquefaciens α-amylase (BAA) on the enzyme properties was investigated by site-directed mutagenesis. The calcium-binding residues Asp231, Asp233, and Asp438 were replaced with Asn, Asn, and Gly to produce the mutants D231N, D233N, and D438G, respectively. The mutant amylases were purified to homogeneity and the purified enzymes was estimated to be approximately 58 kDa. The specific activity for the mutant enzyme D233N was decreased by 84.8%, while D231N and D438G showed a decrease of 6.3% and 3.5% to that of the wild-type enzyme, respectively. No significant changes in the K m value, thermo-stability, optimum temperature, and optimum pH were observed in the mutations of D231N and D438G, while substitution of Asp233 with Asn resulted in a dramatic reduction in the value of catalytic efficiency (K cat/K m) and thermo-stability at 60°C. The ranges of optimum temperature and optimum pH for D233N were also reduced to about 10°C and 3–4 units, respectively.  相似文献   

13.
Site-directed mutagenesis of porcine pepsin was performed to identify its active sites that regulate nucleic acid (NA) digestion activity and to analyze the mechanism pepsin-mediated NA digestion. The mutation sites were distributed at the catalytic center of the enzyme (T33A, G34A, Y75H, T77A, Y189H, V214A, G217A and S219A) and at its active site (D32A and D215A) for protein digestion. Mutation of the active site residues Asp32 and Asp215 led to the inactivation of pepsin (both the NA and protein digestion activity), which demonstrated that the active sites of the pepsin protease activity were also important for its nuclease activity. Analysis of the variants revealed that T33A and G217A mutants showed a complete loss of NA digestion activity. In conclusion, residues Asp32, Thr33, Asp215 and Gly217 were related to the pepsin active sites for NA digestion. Moreover, the Y189H and V214A variants showed a loss of digestion activity on double-strand DNA (dsDNA) but only a decrease in digestion activity on single-strand DNA (ssDNA). On the contrary, the G34A variant showed a loss of digestion activity on ssDNA but only a decrease in digestion activity on dsDNA. Our findings are the first to identify the active sites of pepsin nuclease activity and lay the framework for further study of the mechanism of pepsin nuclease activity.  相似文献   

14.
Tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal aminopeptidase that cleaves off tripeptides from the free N termini of oligopeptides and also shows minor endopeptidase activity. TPP I is synthesized as a preproenzyme. Its proenzyme autoactivates under acidic conditions in vitro, resulting in a rapid conversion into the mature form. In this study, we examined the process of maturation in vitro of recombinant latent human TPP I purified to homogeneity from secretions of Chinese hamster ovary cells overexpressing TPP I cDNA. Autoprocessing of TPP I proenzyme was carried out at a wide pH range, from approximately 2.0 to 6.0, albeit with different efficiencies depending on the pH and the type of buffer. However, the acquisition of enzymatic activity in the same buffer took place in a narrower pH "window," usually in the range of 3.6-4.2. N-terminal sequencing revealed that mature, inactive enzyme generated during autoactivation at higher pH contained N-terminal extensions (starting at 6 and 14 amino acid residues upstream of the prosegment/mature enzyme junction), which could contribute to the lack of activity of TPP I generated in this manner. Autoprocessing was not associated with any major changes of the secondary structure of the proenzyme, as revealed by CD spectroscopy. Both the activation and proteolytic processing of the recombinant TPP I precursor were primarily concentration-independent. The addition of the mature enzyme did not accelerate the processing of the proenzyme. In addition, the maturation of the proenzyme was not affected by the presence of glycerol. Finally, the proenzyme with the active site mutated (S475L) was not processed in the presence of the wild-type enzyme. All of these findings indicate a primarily intramolecular (unimolecular) mechanism of TPP I activation and autoprocessing and suggest that in vivo mature enzyme does not significantly participate in its own generation from the precursor.  相似文献   

15.
Bovine kidney lysosomal alpha-mannosidase is a family 38 alpha-mannosidase involved in the degradation of glycoproteins. The mechanism-based reagent, 5-fluoro-beta-L-gulosyl fluoride, was used to trap a glycosyl-enzyme intermediate, thereby labelling the catalytic nucleophile of this enzyme. After proteolytic digestion and high performance liquid chromatography/tandem mass spectrometry (MS) analysis, a labelled peptide was localised, and the sequence: HIDPFGHSRE determined by fragmentation tandem MS analysis. Taking into consideration sequence alignments of this region with those of other alpha-mannosidases of the same family, this result strongly suggests that the catalytic nucleophile in this enzyme is Asp197.  相似文献   

16.
Mutant forms of aromatase cytochrome P-450 bearing modifications of amino acid residues Pro308 and Asp309 and expressed in transfected Chinese hamster ovary cells were subjected to kinetic analysis and inhibition studies. The Km for androstenedione for expressed wild type (11.0 +/- 0.3 nM SEM, n = 3) increased 4-, 25- and 31-fold for mutants Pro308Phe, Asp309Asn and Asp309Ala, respectively. There were significant differences in sensitivity among wild type and mutants to highly selective inhibitors of estrogen biosynthesis. 4-Hydroxyandrostenedione (4-OHA) a strong inhibitor of wild type aromatase activity (IC50 = 21 nM and Ki = 10 nM), was even more effective against mutant Pro308Phe (IC50 = 13 nM and Ki = 2.8 nM), but inhibition of mutants Asp309Asn and Asp309Ala was considerably less (IC50 = 345 and 330 nM and Ki = 55 and 79 nM, respectively). Expressed wild type aromatase and Pro308Phe aromatase were strongly inhibited by CGS 16949A (IC50 = 4.0 and 4.6 nM, respectively) whereas mutants Asp309Asn and Asp309Ala were markedly less sensitive (IC50 = 140 and 150 nM, respectively). CGS 18320B produced similar inhibition. Kinetic analyses produced Ki = 0.4 nM for CGS 16949A inhibition of wild type versus 1.1, 37 and 58 nM, respectively, against Pro308Phe, Asp309Asn and Asp309Ala. The results demonstrate significant changes in function resulting from single amino acid modifications of the aromatase enzyme. Our data indicate that mutation in Asp309 creates a major distortion in the substrate binding site, rendering the enzyme much less efficient for androstenedione aromatization. The substitution of Pro308 with Phe produces weaker affinity for androstenedione in the substrate pocket, but this alteration favors 4-OHA binding. Similarly, mutant Pro308Phe exhibits a slightly greater sensitivity to inhibition by CGS 18320B than does the wild type. These results indicate that residues Pro308 and Asp309 play critical roles in determining substrate specificity and catalytic capability in aromatase.  相似文献   

17.
In the active centre of pancreatic phospholipase A2 His48 is at hydrogen-bonding distance to Asp99. This Asp-His couple is assumed to act together with a water molecule as a catalytic triad. Asp99 is also linked via an extended hydrogen bonding system to the side chains of Tyr52 and Tyr73. To probe the function of the fully conserved Asp99, Tyr52 and Tyr73 residues in phospholipase A2, the Asp99 residue was replaced by Asn, and each of the two tyrosines was separately replaced by either a Phe or a Gln. The catalytic and binding properties of the Phe52 and Phe73 mutants did not change significantly relative to the wild-type enzyme. This rules out the possibility that either one of the two Tyr residues in the wild-type enzyme can function as an acyl acceptor or proton donor in catalysis. The Gln73 mutant could not be obtained in any significant amounts probably due to incorrect folding. The Gln52 mutant was isolated in low yield. This mutant showed a large decrease in catalytic activity while its substrate binding was nearly unchanged. The results suggest a structural role rather than a catalytic function of Tyr52 and Tyr73. Substitution of asparagine for aspartate hardly affects the binding constants for both monomeric and micellar substrate analogues. Kinetic characterization revealed that the Asn99 mutant has retained no less than 65% of its enzymatic activity on the monomeric substrate rac 1,2-dihexanoyldithio-propyl-3-phosphocholine, probably due to the fact that during hydrolysis of monomeric substrate by phospholipase A2 proton transfer is not the rate-limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Deuterolysin (EC 3.4.24.39; formerly designated as neutral proteinase II) from Aspergillus oryzae, which contains 1 g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. Active-site determination of the recombinant enzyme expressed in Escherichia coli was performed by site-directed mutagenesis. Substitutions of His(128) and His(132) with Arg, of Glu(129) with Gln or Asp, of Asp(143) with Asn or Glu, of Asp(164) with Asn, and of Tyr(106) with Phe resulted in almost complete loss of the activity of the mutant enzymes. It can be concluded that His(128), His(132), and Asp(164) provide the Zn(2+) ligands of the enzyme according to a (65)Zn binding assay. Based on site-directed mutagenesis experiments, it was demonstrated that the three essential amino acid residues Glu(129), Asp(143), and Tyr(106) are catalytically crucial residues in the enzyme. Glu(129) may be implicated in a central role in the catalytic function. We conclude that deuterolysin is a member of a family of Zn(2+) metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand.  相似文献   

19.
Lin FP  Chen HC  Lin CS 《IUBMB life》1999,48(2):199-204
Site-directed mutagenesis was used to explore the roles of amino acid residues involved in the activity of chitinase from Aeromonas caviae. Kinetic parameters for 4-methylumbelliferyl-N,N'-diacetyl-chitobiose or 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined with wild-type and mutant chitinases. Chitinases with the mutations E315D (or Q) and D391E (or N) were severely impaired and had dramatically decreased kcat. However, the effect of the these mutations on the Km values were different. The function of the carboxyl group of Asp313 was partially replaced by the amide of Asn when the 4-methylumbelliferyl-N,N',N"-triacetylchitotriose substrate was used. Results indicated that Asp313, Glu315, and Asp391 might be the best candidates for the catalytic residues of chitinase A from Aeromonas caviae.  相似文献   

20.
In ferredoxin I from Azotobacter vinelandii, the reduction of a [3Fe-4S] iron-sulphur cluster is coupled with the protonation of the mu2S sulphur atom that is approx. 6 A away from the protein boundary. The recent study of the site-specific mutants of ferredoxin I led to the conclusion that a particular surface aspartic residue (Asp15) is solely responsible for the proton transfer to the mu2S atom by 'rapid penetrative excursions' (K. Chen, J. Hirst, R. Camba, C.A. Bonagura, C.D. Stout, B.K. Burgess, F.A. Armstrong, Nature 405 (2000) 814-817). In the same paper it has been reported that the replacement of Asp15 by glutamate led to the blockage of the enzyme, although glutamate, with its longer and more flexible side chain, should apparently do even better as a mobile proton carrier than aspartate. We tackled this puzzling incompetence of Glu15 by molecular dynamics simulations. It was revealed that the conformational alterations of Asp15 are energetically balanced by the straining of the nearby Lys84 side chain in wild-type ferredoxin I but not in the Asp15-->Glu mutant. Lys84 in ferredoxin I of A. vinelandii seems to represent the first case where the strained (entatic) conformation of a particular amino acid side chain could be directly identified in the ground state of an enzyme and assigned to a distinct mechanism of energy balance during the catalytic transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号