首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three kinds of capsular polysaccharide (CP) were found to be produced by Burkholderia pseudomallei. When the bacterium was grown with the medium without glycerol, CP-1a and CP-1b were produced. CP-1a was mainly 1.4-linked glucan and CP-1b was identified as a polymer composed of galactose and 3-deoxy-D-manno-octulosonic acid, whose chemical structure was recently reported by other laboratories. When the bacterium was grown with the medium containing 5" glycerol. CP-2 was synthesized. CP-2 contained galactose, rhamnose, mannose, glucose and a uronic acid in a ratio of approximately 3:1:0.3:1:1. Methylation analysis of the purified polysaccharides demonstrated that the two acidic polysaccharides. CP-1b and CP-2 shared no common structure, indicating that CP-2 was an acidic capsular polysaccharide whose chemical characters were not reported previously.  相似文献   

2.
3.
Abstract Endotoxic activities of lipopolysaccharide (LPS) isolated from Burkholderia (Pseudomonas) pseudomallei , a causative agent of melioidosis, were investigated. Compared to an enterobacterial LPS (SAE-LPS), B. pseudomallei LPS (BP-LPS) exhibited weaker pyrogenic activity in rabbits, lethal toxicity in galactosamine-sensitized mice and murine macrophage activation, i.e. production of tumor necrosis factor, interleukin-6 and nitric oxide. BP-LPS, on the other hand, exhibited stronger mitogenic activity to murine splenocytes than SAE-LPS; moreover, it stimulated even the splenocytes of LPS-resistant C3H/HeJ mice. Unusual chemical structures in the acid-stable inner core region attached to the lipid A moiety of BP-LPS may be responsible for this strong mitogenic activity.  相似文献   

4.
The best yield of lipopolysaccharide (LPS) of Pseudomonas pseudomallei GIFU 12046 was obtained by extraction of defatted cells by phenol/chloroform/petroleum ether. The LPS showed a smooth character on SDS-polyacrylamide gel electrophoresis and contained D-glucose, L-glycero-D-manno-heptose, and D-glucosamine as the main sugar components, and 3-hydroxypalmitic acid as an amide-linked fatty acid. The growth conditions did not affect the electrophoresis profile and chemical composition of LPS. 2-Keto-3-deoxyoctonic acid was not detectable, and mild acid hydrolysis could not liberate free lipid A, suggesting that the linkage between inner core and lipid A was stable against acid hydrolysis, and the structure of this region is similar to that of P. cepacia, which has close taxonomic relationship with P. pseudomallei.  相似文献   

5.
Burkholderia pseudomallei, the etiological agent of melioidosis, is an animal pathogen capable of inducing a highly fatal septicemia. B. pseudomallei possesses three type III secretion system (TTSS) clusters, two of which (TTSS1 and TTSS2) are homologous to the TTSS of the plant pathogen Ralstonia solanacearum, and one (TTSS3) is homologous to the Salmonella SPI-1 mammalian pathogenicity island. We have demonstrated that TTSS3 is required for the full virulence of B. pseudomallei in a hamster model of infection. We have also examined the virulence of B. pseudomallei mutants deficient in several putative TTSS3 effector molecules, and found no significant attenuation of B. pseudomallei virulence in the hamster model.  相似文献   

6.
Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis may be differentiated from closely related species of Burkholderia mallei that causes glanders and non-pathogenic species of Burkholderia thailandensis by multiplex PCR. The multiplex PCR consists of primers that flank a 10-bp repetitive element in B. pseudomallei and B. mallei amplifying PCR fragment of varying sizes between 400-700 bp, a unique sequence in B. thailandensis amplifying a PCR fragment of 308 bp and the metalloprotease gene amplifying a PCR fragment of 245 bp in B. pseudomallei and B. thailandensis. The multiplex PCR not only can differentiate the three Burkholderia species but can also be used for epidemiological typing of B. pseudomallei and B. mallei strains.  相似文献   

7.
A subtraction library of Burkholderia pseudomallei was constructed by subtractive hybridisation of B. pseudomallei genomic DNA with Burkholderia thailandensis genomic DNA. Two clones were found to have significant sequence similarity to insertion sequences which have previously not been found in B. pseudomallei (designated ISA and ISB); and two clones showed sequence similarity to different regions of Burkholderia cepacia IS407 that has recently been detected in B. pseudomallei. The former, though possibly non-functional, represents new transposable genetic elements of B. pseudomallei. All three sequences were found to be present in multi-copy in the genomes of a number of B. pseudomallei strains and in B. thailandensis, which are the first transposable elements identified in this species.  相似文献   

8.
In this study, it was demonstrated, by using agar diffusion tests and a Transwell system, that Burkholderia multivorans NKI379 has an antagonistic effect against the growth of B. pseudomallei. Bacterial representatives were isolated from agricultural crop soil and mixed to construct a partial bacterial community structure that was based on the results of reproducible patterns following PCR-denaturing gradient gel electrophoresis analysis of total soil chromosomes. The antagonistic effect of B. multivorans on B. pseudomallei was observed in this imitate community. In a field study of agricultural crop soil, the presence of B. pseudomallei was inversely related to the presence of the antagonistic strains B. multivorans or B. cenocepacia. B. multivorans NKI379 can survive in a broader range of pH, temperatures and salt concentrations than B. pseudomallei, suggesting that B. multivorans can adapt to extreme environmental changes and therefore predominates over B. pseudomallei in natural environments.  相似文献   

9.
10.
11.
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation.  相似文献   

12.
Burkholderia pseudomallei DT is unusual as it exhibits six distinct colony morphotypes. Types III and V show stronger motility, whereas type VI exhibits the highest levels of bacterial association with peritoneal exudate cells. Although the bacterial loads in the organs are not significantly different for infections by the six distinct morphotypes, higher mortality (100% and 89%, respectively) and larger areas of abnormal liver debris (20.6% and 22.4%, respectively) are found with types I- and III-infected mice compared to the others. These morphotypes sometimes undergo switching to a mucoid type in the body of mice, but the reverse has never been observed.  相似文献   

13.
类鼻疽是由类鼻疽伯克霍尔德菌(Burkholderia pseudomallei,B. pseudomallei)(简称类鼻疽菌)感染引起的一种热带医学疾病。该病临床表现复杂多样,严重感染时可快速发展为败血症,病死率高达40%。越来越多的证据表明,它是一种正在扩散的人兽共患传染病。本文就近年来关于类鼻疽菌感染的重要毒力因子以及其在免疫逃逸中的作用机制研究进展进行总结,以期了解类鼻疽菌的致病机制,为将来有效疫苗和治疗药物的研发提供理论指导。  相似文献   

14.
The isolation of therapeutic and functional protease inhibitors in vitro via combinatorial chemistry and phage display technology has been described previously. Here we report the construction of a combinatorial mouse-human chimeric antibody fragment (Fab) antibody library targeted against the protease of the tropical pathogen, Burkholderia pseudomallei. The resulting library was biopanned against the protease, and selected clones were analyzed for their ability to function as protease inhibitors. Three families of Fabs were identified by restriction fingerprinting, all of which demonstrated high specificity towards the protease of B. pseudomallei. Purified Fabs also demonstrated the capacity to inhibit B. pseudomallei protease activity in vitro, and this inhibitory property was exclusive to the pathogenic protease. Thus these recombinant antibodies are candidates for immunotherapy and tools to aid in further elucidation of the mechanism of action of the B. pseudomallei protease.  相似文献   

15.
Burkholderia pseudomallei is the etiological agent of melioidosis, a potentially fatal disease occurring in man and animals. The aim of this study was to investigate the pathophysiological course of experimental melioidosis, and to identify the target organs, in an animal model. For this purpose SWISS mice were infected intraperitoneally with the virulent strain B. pseudomallei 6068. The bacterial load of various organs was quantified daily by bacteriological analysis and by an enzyme-linked immunosorbent assay (ELISA) based on a monoclonal antibody specific to B. pseudomallei exopolysaccharide (EPS). Electron microscopic investigation of the spleen was performed to locate the bacteria at the cellular level. In this model of acute melioidosis, B. pseudomallei had a marked organ tropism for liver and spleen, and showed evidence of in vivo growth with a bacterial burden of 1.6x10(9) colony forming units (CFU) per gram of spleen 5 days after infection with 200 CFU. The highest bacterial loads were detected in the spleen at all time points, in a range from 2x10(6) to 2x10(9) CFU g(-1). They were still 50-80 times greater than the load of the liver at the time of peak burden. Other investigated organs such as lungs, kidneys, and bone marrow were 10(2)-10(4)-fold less infected than the spleen, with loads ranging from 3x10(2) to 3x10(6) CFU g(-1). The heart and the brain were sites of a delayed infection, with counts in a range from 10(3) to 10(7) times lower than bacterial counts in the spleen. The EPS-specific ELISA proved to be highly sensitive, particularly at the level of those tissues in which colony counting on agar revealed low contamination. In the blood, EPS was detected at concentrations corresponding to bacterial loads ranging from 8x10(3) to 6x10(4) CFU ml(-1). Electron microscopic examination of the spleen revealed figures of phagocytosis, and the presence of large numbers of intact bacteria, which occurred either as single cells or densely packed into vacuoles. Sparse figures suggesting bacterial replication were also observed. In addition, some bacteria could be seen in vacuoles that seemed to have lost their membrane. These observations provide a basis for further investigations on the pathogenesis of the disease.  相似文献   

16.
【【背景】类鼻疽杆菌是一种能够引起人类疾病甚至死亡的胞内寄生菌,Ⅲ型分泌系统在该菌入侵上皮细胞、逃避宿主免疫以及毒力因子的分泌过程中发挥重要作用,其中bopA基因为TTSS-3基因编码的重要效应蛋白,在类鼻疽杆菌的免疫逃逸中发挥重要作用。【目的】构建类鼻疽杆菌bopA基因敲除菌株,并对其生物学特征进行初步研究。【方法】构建pK18mobSacB-ΔbopA自杀质粒,通过大肠杆菌S17-1λpair以接合的方式转入类鼻疽杆菌,利用同源重组敲除了bopA基因,并用蔗糖平板筛选出菌株,最后在细胞和动物水平检测敲除菌株的表型变化。【结果】构建了bopA敲除的类鼻疽菌株,并通过细胞和动物实验证实敲除bopA基因后,细菌的细胞侵袭和胞内存活以及体内定殖能力都显著降低。【结论】利用同源重组成功构建类鼻疽bopA基因敲除株,为深入研究该基因的作用靶点奠定了实验基础。  相似文献   

17.
Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l?1, while the minimum biofilm elimination concentration (MBEC) was 780–3,120 mg l?1. Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.  相似文献   

18.
Filamentous phage random peptide libraries were used to identify the epitopes of Burkholderia pseudomallei protease by panning against IgG polyclonal sera that exhibited protease neutralizing properties. The isolated fusion peptides presented a consensus peptide sequence, TKSMALSG, which closely resembles part of the active site sequence, 435GTSMATPHVAG445, of B. pseudomallei serine metalloprotease. By comparing the consensus sequence, TKSMALSG, with the predicted three-dimensional molecular model of B. pseudomallei serine metalloprotease, it appears that the potential antibody binding epitope was buried within the molecule. This active site was conformational whereby one continuous sub-region (SMA) was located between two discontinuous sub-regions, supplied by the flanking residues in the same polypeptide. All phages selected from the biopanning with IgG polyclonal sera showed good binding towards the polyclonal antibodies when compared to the negative control. In addition, these peptide-bearing phages showed competitive inhibition of B. pseudomallei serine metalloprotease binding to the polyclonal IgG.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号