首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Blood feeding by the sand fly Lutzomyia longipalpis is aided by the presence of a vasodilator in its salivary glands. This novel vasodilator has been isolated by reversed-phase high-performance liquid chromatography. Ten nanograms of the vasodilator are present in the extract of a pair of sand fly salivary glands. It has 500 times the vasodilatory activity of calcitonin gene-related peptide, previously the most potent vasodilator peptide known. This novel peptide is thus called maxadilan.  相似文献   

3.
Abstract Male Lutzomyia longipalpis of two types from Bolivia were compared using isozyme electrophoresis and wing morphometry. One sample ( ex Chiflonkaka Cave, alt. 2800 m at Toro Toro, Charcas Province, Potosi Department) was 'two-spot' phenotype males (i.e. tergites III and IV with paired pale patches of pheromone glands), whereas two other locality samples (Apa Apa and Imanaco, Sud Yungas Province, La Paz Department) were one-spot male phenotype (only tergite IV with paired pale patches). Multilocus enzyme electrophoresis (using ACON, aGPD, GPI, IDH, MDH, ME, 6PGD, PGM, LAP and PEPB) found no difference between samples from adjacent hen houses at Apa Apa. Nei's standard genetic distance between one-spot samples from Apa Apa and Imanaco (5 km apart, 1500m alt.) was 0.001-0.002, whereas the two-spot males from Toro Toro (800 km away) showed a genetic distance of 0.081 from the one-spot males (Apa Apa and Imanaco). This genetic distance is commensurate with speciation, but may simply be intraspecific differentiation due to 'isolation by distance'.
For comparative wing morphometry, we included additional material of one-spot males from Bolivia (Guyabal, Sud Yungas, La Paz), Brazil, Colombia and Nicaragua. These three other country samples were assumed to be different sibling species in the complex Lutzomyia longipalpis (Lanzaro et al , 1993). Statistics were based on univariate and multivariate analysis. The comparison between size-in and size-free canonical variate analysis (CVA) indicated that the wing morphometric divergence between one-spot and two-spot Bolivian phenotypes was not size dependent and could have taxonomic significance.  相似文献   

4.
A closed colony of Lutzomyia longipalpis was established with specimens collected in the Raposa - Serra do Sol indian reservoir, one of the main foci of visceral leishmaniasis in the State of Roraima, Brazil. Biological observations were made on four generations of a L. longipalpis colony with emphasis on productivity. Aspects studied were the number of laid and retained eggs, and the number of adults (male and female) per generation. During the four generations the percentage of engorged females that laid eggs varied from 64.2% (third generation-F3) to 90.3% (second generation-F2). The mean number of eggs laid per female varied from 23.6 (F3) to 39. 9 (first generation-F1). The maximum number of eggs laid per female varied from 84 (F3) to 124 (F1). The mean number of retained eggs per female was 12.7 (parental generation-P and F1) to 22.1 (F2). The number of females exceeded the number of males in all generations. However, significant difference for male/female ratio was found only for F3. Fecundity rates were between 42.1 (F3) and 58.3 (F2). From a total of 439 blood-fed females, 355 females laid 12,257 eggs that yield 5,354 adults (2,525 males and 2,829 females) in four generations. F2 presented maximum productivity and fecundity rates.  相似文献   

5.
The midgut microbial community in insect vectors of disease is crucial for an effective immune response against infection with various human and animal pathogens. Depending on the aspects of their development, insects can acquire microbes present in soil, water, and plants. Sand flies are major vectors of leishmaniasis, and shown to harbor a wide variety of Gram-negative and Gram-positive bacteria. Sand fly larval stages acquire microorganisms from the soil, and the abundance and distribution of these microorganisms may vary depending on the sand fly species or the breeding site. Here, we assess the distribution of two bacteria commonly found within the gut of sand flies, Pantoea agglomerans and Bacillus subtilis. We demonstrate that these bacteria are able to differentially infect the larval digestive tract, and regulate the immune response in sand fly larvae. Moreover, bacterial distribution, and likely the ability to colonize the gut, is driven, at least in part, by a gradient of pH present in the gut.  相似文献   

6.
7.
A nylon net cage (260 x 40 x 40 cm) provided with unidirectional air flow was used to demonstrate the response of female sandflies, Lutzomyia longipalpis Lutz & Neiva (Diptera: Psychodidae) to a host and extract of male pheromone glands over a distance of 240 cm. Females responded more rapidly and in greater numbers to the host if male pheromone was present. Results suggest that one function of the pheromone may be to attract females from some distance to a common mating site, on or near the host.  相似文献   

8.
Abstract Male Lutzomyia longipalpis (Lutz & Neiva) pheromone extracted from tergal glands combined with heat, carbon dioxide gas and hamster urine was found to be attractive to virgin female sandflies. The host factors if offered in the absence of pheromone or a heat source were, however, unattractive to female flies. Pheromone stored for 6 days and then combined with the same host components remained attractive to female flies but storage failed to enhance its attractiveness. The effects of carbon dioxide gas, hamster urine, chicken uropygial gland extract and octenol plus acetone on the responses of females were inconsistent. A ceramic battery powered heat source was tested with pheromone and host attractants and showed potential for field application in developing a pheromone trap.  相似文献   

9.

Background

Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis.

Methodology/Principal Findings

Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-β. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression.

Conclusions/Significance

Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector.  相似文献   

10.
Phlebotomine captures were performed in February 2010 in Salto (Salto department) and Bella Unión-Cuarein (Artigas department), Uruguay. Bella Unión is located across the Paraná River from Monte Caseros, Argentina, where a focus of canine visceral leishmaniasis (VL) was reported in 2009. No VL cases have ever been recorded in Uruguay and the last reported capture of Phlebotominae was in 1932 (Lutzomyia cortelezzii and Lutzomyia gaminarai). Light traps were placed in peridomestic environments, and Lutzomyia longipalpis, the main vector of visceral leishmaniasis, was found in Salto and Bella Unión. This is a first report of an area of potential VL transmission in Uruguay. Active and coordinated surveillance is required immediately the Uruguay-Argentina-Brazil border area.  相似文献   

11.
An historical review is given of American visceral leishmaniasis (AVL), with particular reference to the eco-epidemiology of the disease in Brazil. Following the first records of AVL in this country, in 1934, the sandfly Lutzomyia longipalpis (Lutz and Neiva, 1912) was incriminated as the principal vector. It is now generally accepted, however, that there exist a number of cryptic species under the name of Lu. longipalpis s.l. and that variations in the quantity of the vasodilatory peptide maxadilan in the saliva of flies from different populations of Lu. longipalpis s.l., may account for the variable clinical manifestations of AVL seen in different geographic regions. Distribution of AVL has been shown to extend throughout most of South and Central America, with the domestic dog serving as the principal reservoir of infection for man. However, while one hypothesis suggests that the causative parasite is Leishmania infantum, imported from Europe with the Portuguese and Spanish colonists, the demonstration of a high rate of benign, inapparent infection in foxes in Amazonian Brazil raised an opposing suggestion that the parasite is indigenous to the Americas. Recent reports of similar infections in native marsupials, and possibly rodents, tend to support this view, particularly as Lu. longipalpis is primordially a silvatic sandfly. Although effective control measures in foci of the disease will diminish the number of canine and human infections, the presence of such an enzootic in a variety of native animals will render the total eradication of AVL unlikely.  相似文献   

12.
As a preparatory stage for a study aiming at identifying the species and subspecies of local Leishmania in naturally infected sandflies through immunoradiometric assay with monoclonal antibodies, we tried to obtain experimental infections of phlebotomines with well characterized stocks of parasites, in order to test the effectiveness of the method.  相似文献   

13.
14.
The principal objective of this study was to assess a modeling approach to Lu. longipalpis distribution in an urban scenario, discriminating micro-scale landscape variables at microhabitat and macrohabitat scales and the presence from the abundance of the vector. For this objective, we studied vectors and domestic reservoirs and evaluated different environmental variables simultaneously, so we constructed a set of 13 models to account for micro-habitats, macro-habitats and mixed-habitats. We captured a total of 853 sandflies, of which 98.35% were Lu. longipalpis. We sampled a total of 197 dogs; 177 of which were associated with households where insects were sampled. Positive rK39 dogs represented 16.75% of the total, of which 47% were asymptomatic. Distance to the border of the city and high to medium density vegetation cover ended to be the explanatory variables, all positive, for the presence of sandflies in the city. All variables in the abundance model ended to be explanatory, trees around the trap, distance to the stream and its quadratic, being the last one the only one with negative coefficient indicating that the maximum abundance was associated with medium values of distance to the stream. The spatial distribution of dogs infected with L. infantum showed a heterogeneous pattern throughout the city; however, we could not confirm an association of the distribution with the variables assessed. In relation to Lu. longipalpis distribution, the strategy to discriminate the micro-spatial scales at which the environmental variables were recorded allowed us to associate presence with macrohabitat variables and abundance with microhabitat and macrohabitat variables. Based on the variables associated with Lu. longipalpis, the model will be validated in other cities and environmental surveillance, and control interventions will be proposed and evaluated in the microscale level and integrated with socio-cultural approaches and programmatic and village (mesoscale) strategies.  相似文献   

15.
Phlebotomine sand flies are the vectors of medically important Leishmania. The Leishmania protozoa reside in the sand fly gut, but the nature of the immune response to the presence of Leishmania is unknown. Reactive oxygen species (ROS) are a major component of insect innate immune pathways regulating gut-microbe homeostasis. Here we show that the concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens but not after feeding on the Leishmania that uses the sand fly as a vector. Moreover, the Leishmania is sensitive to ROS either by oral administration of ROS to the infected fly or by silencing a gene that expresses a sand fly ROS-scavenging enzyme. Finally, the treatment of sand flies with an exogenous ROS scavenger (uric acid) altered the gut microbial homeostasis, led to an increased commensal gut microbiota, and reduced insect survival after oral infection with S. marcescens. Our study demonstrates a differential response of the sand fly ROS system to gut microbiota, an insect pathogen, and the Leishmania that utilize the sand fly as a vehicle for transmission between mammalian hosts.  相似文献   

16.

Background

Lutzomyia longipalpis is the primary vector of American visceral leishmaniasis. There is strong evidence that L. longipalpis is a species complex, but until recently the existence of sibling species among Brazilian populations was considered a controversial issue. In addition, there is still no consensus regarding the number of species occurring in this complex.

Methodology/Principal Findings

Using period, a gene that controls circadian rhythms and affects interpulse interval periodicity of the male courtship songs in Drosophila melanogaster and close relatives, we analyzed the molecular polymorphism in a number of L. longipalpis samples from different regions in Brazil and compared the results with our previously published data using the same marker. We also studied the male copulation songs and pheromones from some of these populations. The results obtained so far suggest the existence of two main groups of populations in Brazil, one group representing a single species with males producing Burst-type copulation songs and cembrene-1 pheromones; and a second group that is more heterogeneous and probably represents a number of incipient species producing different combinations of Pulse-type songs and pheromones.

Conclusions/Significance

Our results reveal a high level of complexity in the divergence and gene-flow among Brazilian populations of the L. longipalpis species complex. This raises important questions concerning the epidemiological consequences of this incipient speciation process.  相似文献   

17.
The sand fly Lutzomyia longipalpis is the vector of Leishmania infantum, the etiological agent of American visceral leishmaniasis. Despite its importance, until now the internal anatomy of the immature forms has never been described and little is known about their digestive processes. In nature, sand fly larvae feed on organic detritus in the soil, constantly ingesting large amounts of material. The objective of this study was to describe the anatomy of the gut and the pH of the gut lumen, as well as to investigate the proteases responsible for protein digestion. The larvae have a short gut with a prominent, well-developed midgut. Ingestion of food containing indicator dyes permitted the gut pH to be measured. A pH gradient was observed, varying from >9 in the anterior midgut to 6.5-7.0, in the posterior midgut. The endoproteolytic enzymes are secreted in the anterior midgut and are able to digest azocasein over a large pH range, specially at pH 11. Studies with various inhibitors indicated that the digestive endoproteases are trypsin- and chymotrypsin-like enzymes. These results were confirmed by using the substrates BApNA and N-CBZ-L-PpNA, specific for trypsin and chymotrypsin, respectively. Aminopeptidases were also investigated with p-nitroaniline-derived substrates. These enzymes are located in the posterior midgut, bound to the membranes and functioning at an optimal pH of 6.5-8.0. The results presented here are consistent with the current proposal that proteins are digested to peptides in the anterior midgut inside the endoperitrophic space and subsequently undergo digestion in the ectoperitrophic space of the posterior midgut.  相似文献   

18.
19.

Background

Sand fly saliva contains molecules that modify the host''s hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets) and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS) from Lutzomyia (L.) longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo.

Methodology/Principal Findings

Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE2 and LTB4 production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE2 production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE2 production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE2 production by macrophages.

Conclusion

In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE2 production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC-α signaling pathways. This study provides new insights regarding the pharmacological mechanisms whereby L. longipalpis saliva influences the early steps of the host''s inflammatory response.  相似文献   

20.
Laboratory-reared Lutzomyia longipalpis (Lutz and Neiva 1912) was tested with extracts of two ichthyotoxic plants, known as timbós, used as fishing poison in the Amazon. Phlebotomines, L. longipalpis, and plants, Antonia ovata and Derris amazonica, were collected in the Raposa-Serra do Sol Indian Reserve, a focus of visceral leishmaniasis in the State of Roraima, Brazil. Extracts were prepared from dried leaves of A. ovata and roots of D. amazonica that were percolated in water, filtered and dried out at 50 degrees C. The solid extract obtained was diluted in water at 150, 200 and 250 mg/ml. The solution was blotted in filter paper placed at the bottom of cylindric glass tubes containing sand flies. For each plant extract and dilution, two series of triplicates with 5 male and 5 female specimens of L. longipalpis were used. Mortality was recorded every 2 h during 72 h of exposure. At 72 h the mortality was as high as 80% for extracts of A. ovata (LD50 = 233 mg/ ml), and 100% for D. amazonica (LD50 = 212 mg/ ml) whereas in the control groups maximum mortality never surpassed 13%. Preliminary assays indicated that A. ovata and D. amazonica displayed significant insecticide effect against L. longipalpis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号