首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nitrogen source (N(2) or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. 'Baccara') plants at different growth stages using (13)C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO(2)] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N(2)-fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses.  相似文献   

2.
3.
Voisin AS  Bourion V  Duc G  Salon C 《Annals of botany》2007,100(7):1525-1536
BACKGROUNDS AND AIMS: Nitrogen nutrition of legumes, which relies both on atmospheric N2 and soil mineral N, remains a major limiting factor of growth. A decade ago, breeders tried to increase N uptake through hypernodulation. Despite their high nodule biomass, hypernodulating mutants were never shown to accumulate more nitrogen than wild types; they even generally displayed depressed shoot growth. The aim of this study was to dissect genetic variability associated with N nutrition in relation to C nutrition, using an ecophysiological framework and to propose an ideotype for N nutrition in pea. METHODS: Five pea genotypes (Pisum sativum) characterized by contrasting root and nodule biomasses were grown in the field. Variability among genotypes in dry matter and N accumulation was analysed, considering both the structures involved in N acquisition in terms of root and nodule biomass and their efficiency, in terms of N accumulated through mineral N absorption or symbiotic N2 fixation per amount of root or nodule biomass, respectively. KEY RESULTS: Nodule efficiency of hypernodulating mutants was negatively correlated to nodule biomass, presumably due to the high carbon costs induced by their excessive nodule formation. Root efficiency was only negatively correlated to root biomass before the beginning of the seed-filling stage, suggesting competition for carbon between root formation and functioning during the early stages of growth. This was no longer the case after the beginning of the seed-filling stage and nitrate absorption was then positively correlated to root biomass. CONCLUSIONS: Due to the high C costs induced by nodule formation and its detrimental effect on shoot and root growth, selecting traits for the improvement of N acquisition by legumes must be engineered (a) considering inter-relationships between C and N metabolisms and (b) in terms of temporal complementarities between N2 fixation and nitrate absorption rather than through direct increase of nodule and/or root biomass.  相似文献   

4.
The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.  相似文献   

5.
Sas L  Rengel Z  Tang C 《Annals of botany》2002,89(4):435-442
Nitrogen nutrition can influence cluster root formation in many wild species, but the effect of N form on cluster root formation and root exudation by white lupin is not known. In a solution culture study, we examined the effect of N nutrition (ammonium, nitrate, both or N2 fixation) on cluster root formation and H+ extrusion by white lupin plants under deficient and adequate P supply. The number of cluster roots increased greatly when plants were supplied with I microM P compared with 50 microM P, the increase being 7.8-fold for plants treated with (NH4)2SO4, 3-fold for plants treated with KNO3 and NH4NO3, and 2-4-fold for N2-fixing plants. Under P deficiency. NH4+-N supply resulted in production of a greater number and biomass of cluster roots than other N sources. Dry weight of cluster roots was 30 % higher than that of non-cluster roots in P-deficient plants treated with (NH4)2SO4 and NH4NO3. In plants treated with sufficient P (50 microM), the weight of non-cluster roots was approx. 90 % greater than that of cluster roots. Both total (micromol per plant h(-1)) and specific (micromol g(-1) root d. wt h(-1)) H+ extrusions were greatest from roots of plants supplied with (NH4)2SO4, followed by those supplied with NH4NO3 and N2 fixation, whereas plants receiving KNO3 had negative net H+ extrusion between the third and fifth week of growth (indicating uptake of protons or release of OH- ions). The rate of proton extrusion by NH4+-N-fed plants was similar under P-deficient and P-sufficient conditions. In contrast, proton exudation by N2-fixing plants and KNO3-treated plants was ten-fold greater under P deficiency than under P sufficiency. In comparison with P deficiency, plants treated with 50 microM P had a significantly higher concentration of P in roots, shoots and youngest expanded leaves (YEL). Compared with the N2 fixation and KNO3 treatments, total N concentration was highest in roots, shoots and YEL of plants supplied with (NH4)2SO4 and NH4NO3, regardless of P supply. Under P deficiency, K concentrations in roots decreased at all N supplies, especially in plants treated with (NH4)2SO4 and NH4NO3, which coincided with the greatest H+ extrusion at these P and N supplies. In conclusion, NH4-N nutrition stimulated cluster root formation and H+ extrusion by roots of P-deficient white lupin.  相似文献   

6.
不同氮素形态比例对五味子幼苗生长特性的影响   总被引:2,自引:0,他引:2  
以2年生五味子苗木为试验材料,在田间条件下,施以铵态氮(NH4+-N)和硝态氮(NO3--N)不同比例,分析了叶片可溶性蛋白、叶绿素含量、根系及茎叶中全氮含量、生物量等季节的动态变化规律,探讨了不同氮素形态比例对五味子苗木生长的影响。结果表明,五味子苗木在不同生长时期对不同氮素形态的吸收和利用存在明显差异,NH4+-N和NO3--N对五味子幼苗生长有显著的联合效应。在五味子生长前期,五味子主要以吸收和同化NH4+-N为主,并以铵态氮和硝态氮比例为75∶25时地上部生物量积累较多;而在五味子生长的中后期,五味子主要以NO3--N吸收和同化为主,并以铵态氮和硝态氮比例为25∶75时地上部生物量积累较多。  相似文献   

7.
 依托FACE(Free-air CO2 enrichment)研究平台, 利用特制分根集气生长箱, 采用静态箱-GC(Gas chromatography)法, 连续两年研究 了大气CO2浓度升高和不同氮肥水平对冬小麦拔节期、孕穗抽穗期和灌浆末期的根系呼吸及生物量的影响。两季结果表明, CO2浓度升高和高氮 肥量均不同程度地增加了3个阶段的地上部和地下部的生物量, 这有利于增加根茬的还田量; CO2浓度升高对冬小麦不同生长阶段的根系呼吸影 响不同, 在拔节期影响较小;孕穗抽穗期显著增加了根系呼吸, 2004~2005季分别增加33.8%(148.1 mg N&;#8226;kg-1 干土, HN)和43.9%(88.9 mg N&;#8226;kg-1 干土, LN), 2005~2006季分别为23.8%(HN)和28.9%(LN); 而灌浆末期显著降低了根系呼吸, 2004~2005季分别降低31.4%(HN)和23.3% (LN), 2005~2006季分别为25.1%(HN)和18.5%(LN); 高施氮量比低施氮量促进了根系呼吸; 随着作物生长根系呼吸与地下生物量呈显著线性负相 关, 高CO2环境中的R2变小,表明随着作物生长发育高CO2浓度降低了作物根系呼吸与地下部生物量积累间的相关性.  相似文献   

8.
The effects of P deficiency on growth, N(2)-fixation and photosynthesis in white clover (Trifolium repens L.) plants were investigated using three contrasting relative addition rates of P, or following abrupt withdrawal of the P supply. Responses to a constant below-optimum P supply rate consisted of a decline in N(2)-fixation per unit root weight and a small reduction in the efficiency with which electrons were allocated to the reduction of N(2) in nodules. Abrupt removal of P arrested nodule growth and caused a substantial decline in nitrogenase activity per unit root weight, but not per unit nodule mass. Similarly, the rate of photosynthesis per unit leaf area was unaffected by abrupt P removal, whereas CO(2) acquisition for the plant as a whole decreased due to a decline in total leaf area, leaf area per unit leaf weight and utilization of incoming radiation. These changes followed the decline in tissue P concentrations. The ratio between CO(2)-fixation and N(2)-fixation was maintained under short-term P deprivation but increased under long-term low P supply, indicating a regulatory inhibition of nodule activity following morphological and growth adjustments. It is concluded that N(2)-fixation did not limit the growth of clover plants experiencing P deficiency. A low P status induced changes in the relative growth of roots, nodules and shoots rather than changes in N and/or C uptake rates per unit mass or area of these organs.  相似文献   

9.
We followed C and N reserves of grapevines grown in trenches under semi-controlled conditions over a 3-year period after planting. Temporal mobilization of stored C and N and subsequent distribution of reserve materials within the vines were described in parallel with 15N uptake, particularly during the third growing season. Storage C in the perennial tissues (roots, trunk, canes) was mainly made of starch, which accumulated in the ray parenchyma of the wood. In the permanent tissues, starch and total nitrogen contents were found to decrease early in the development (bleeding sap, budbreak) whereas, on a concentration basis, they decreased only after stage 7 (first leaf fully expanded). Starch started to accumulate again in the perennial tissues during flowering. The same observation was made with total nitrogen, although N levels were much lower than those of starch. The 15N study showed that N uptake by the roots started at budbreak and increased with vine development, becoming predominant over reserve mobilization only after the onset of flowering. Taken together, these results indicate that the spring growth period can be divided into three main phases: In the first (dormancy to budbreak), significant losses of C and N proceed mainly via root necrosis. In the second period (first leaf to the onset of bloom), a strong mobilization of starch (and, to a lower extent, of N) occurred for supporting vegetative and reproductive growth. At that point, most of the C and N reserves used on the spring flush were those of the roots, rather than those of the old wood (trunk, canes). In the third period (bloom and early berry development), the mobilization process became low and was relieved by N uptake (and CO2 assimilation) supplying nutrients to the sink structures.  相似文献   

10.
White clover plants were grown for 97 days under two temperature regimes (20/15°C and 8/5°C day/night temperatures) and were supplied with either small amounts (a total of 80 mg N pot–1) of ammonium (NH 4 + ) or nitrate (NO 3 ) nitrogen, or received no mineral N and relied on N2 fixation. Greatest growth and total leaf area of clover plants occurred in N2 fixing and NO 3 -fed plants grown at 20/15°C and poorest growth occurred in NH 4 + -fed plants grown at 8/5°C. Nodule mass per plant was greater at 8/5°C due to increased nodule numbers rather than increased dry weight per nodule. This compensated to some extent for the reduced N2-fixing activity per unit dry weight of nodule tissue found at the low growth temperature up to 116 d after sowing, but thereafter both activity per nodule dry weight and activity per plant were greater at the low temperature. Highest nitrate reductase activity (NRA) per g fresh weight and total activity per leaf, petiole or root occurred in NO 3 -fed plants at 8/5°C. Low growth temperature resulted in a greater partitioning of total plant NRA to the roots of NO 3 -fed plants. The results are considered in relation to the use of N fertiliser in the spring under field conditions.  相似文献   

11.
U. Benecke 《Plant and Soil》1970,33(1-3):30-48
Summary InAlnus viridis nodule growth relative to plant growth was inversely related to the quantity of nitrate added to nutrient solutions. Nodulated plants showed maximum growth when grown independently of supplied nitrogen and made better growth in its absence than unnodulated plants at any level of added nitrogen. Low levels of nitrate caused a depression of growth of nodulated plants, apparently by suppressing both nitrogen fixation and nodule growth. Nodules in nitrogen-free sand culture fixed atmospheric nitrogen at a rate of 6.6 mg/day/g nodule. Phosphorus deficiency was induced by low levels of phosphate and resulted in small plants with dark-green foliage. Root and nodule growth as a percentage of total plant growth and the percentage of total accumulated plant nitrogen below ground were greater at a root temperature of 11°C than 21°C. Thus at low root temperature processes other than nitrogen fixation were limiting to plant growth. Excised nodules were exposed to an N 2 15 -enriched atmosphere. A positive correlation between rate of nitrogen fixation and temperature was obtained, with optimum fixation occurring at about 20°C. It was shown that in spite of decreasing mean temperatures with increase in altitude, rate of nitrogen fixation by nodules of plants growing in the field increased with increase in altitude. This latter trend was deduced to be a reflection of the extent to which the field sites were nitrogen deficient in relation to climatically possible growth.  相似文献   

12.
Discaria americana is a xerophytic shrub which lives in symbiosis with an actinomycete of the genus Frankia. The objective of this paper was to investigate the effects of high soil Zn2+ concentrations on growth and nodulation on the association Discaria americana–Frankia with the aim of determining if this association is suitable for improving contaminated soils. Two experiments were performed in 1 dm3 pots containing soil and different Zn additions, from 0 to 2,000 mg Zn2+ kg−1 dry soil, with or without N fertilization. Zn additions strongly delayed shoot and root growth, but once growth was initiated, the biomass production of the plants supplied with moderate Zn amounts did not differ from the control plants. Zn reduced the final nodule number, but not the total nodule biomass. At the end of the experiment only the highest Zn treatments showed a lower nodule weight than the control plants, while N addition completely inhibited nodulation. It is concluded than Zn reduces the number of Frankia infections, but once the actinomycete is inside the roots, nodules can continue growing according to plant demand for N, compensating the reduced nodule number with more biomass. On the other hand, there is a toxic effect of Zn itself on plants when present in very high concentrations.  相似文献   

13.
The contribution of carbon and nitrogen reserves to regrowth following shoot removal has been studied in the past. However, important gaps remain in understanding the effect of shoot cutting on nodule performance and its relevance during regrowth. In this study, isotopic labelling was conducted at root and canopy levels with both 15N2 and 13C‐depleted CO2 on exclusively nitrogen‐fixing alfalfa plants. As expected, our results indicate that the roots were the main sink organs before shoots were removed. Seven days after regrowth the carbon and nitrogen stored in the roots was invested in shoot biomass formation and partitioned to the nodules. The large depletion in nodule carbohydrate availability suggests that root‐derived carbon compounds were delivered towards nodules in order to sustain respiratory activity. In addition to the limited carbohydrate availability, the upregulation of nodule peroxidases showed that oxidative stress was also involved during poor nodule performance. Fourteen days after cutting, and as a consequence of the stimulated photosynthetic and N2‐fixing machinery, availability of Cnew and Nnew strongly diminished in the plants due to their replacement by C and N assimilated during the post‐labelling period. In summary, our study indicated that during the first week of regrowth, root‐derived C and N remobilization did not overcome C‐ and N‐limitation in nodules and leaves. However, 14 days after cutting, leaf and nodule performance were re‐established.  相似文献   

14.
Hawkins HJ  Wolf G  Stock WD 《Annals of botany》2005,96(7):1275-1282
BACKGROUND AND AIMS: South African soils are not only low in phosphorus (P) but most nitrogen (N) is in organic form, and soil amino acid concentrations can reach 2.6 g kg(-1) soil. The Proteaceae (a main component of the South African Fynbos vegetation) and some Fabaceae produce cluster roots in response to low soil phosphorus. The ability of these roots to acquire the amino acid glycine (Gly) was assessed. METHODS: Uptake of organic N as 13C-15N-Gly was determined in cluster roots and non-cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) in hydroponic culture, taking account of respiratory loss of 13CO2. KEY RESULTS: Both plant species acquired doubly labelled (intact) Gly, and respiratory losses of 13CO2 were small. Lupin (but not leucadendron) acquired more intact Gly when cluster roots were supplied with 13C-15N-Gly than when non-cluster roots were supplied. After treatment with labelled Gly (13C : 15N ratio = 1), lupin cluster roots had a 13C : 15N ratio of about 0.85 compared with 0.59 in labelled non-cluster roots. Rates of uptake of label from Gly did not differ between cluster and non-cluster roots of either species. The ratio of C : N and 13C : 15N in the plant increased in the order: labelled roots < rest of the root < shoot in both species, owing to an increasing proportion of 13C translocation. CONCLUSIONS: Cluster roots of lupin specifically acquired more intact Gly than non-cluster roots, whereas Gly uptake by the cluster and non-cluster roots of leucadendron was comparable. The uptake capacities of cluster roots are discussed in relation to spatial and morphological characteristics in the natural environment.  相似文献   

15.
The response ofAlnus glutinosa, Casuarina cunninghamiana, Elaeagnus angustifolia andMyrica cerifera to a range of substrate nitrogen levels in solution, in relation to plant growth, infection, nodulation and root fine structure was studied. Nine concentrations of potassium nitrate ranging from 0.05 to 3.0 mM, were tested on each of the species. Plants were inoculated withFrankia pure cultures after a two week exposure to one of the nine levels of added nitrate. After six more weeks with constant exposure to nitrate, plants were harvested and assayed. With the exception of Myrica, regression analyses of whole plant dry weights as a function of added nitrate were highly significant. There was a tendency for nodulated plants grown at intermediate levels of added nitrate to exhibit higher relative growth rates, probably due to the additive effect of substrate nitrogen and fixation of atmospheric nitrogen. The mean numbers of nodules per plant were, with the exception of Alnus, significantly higher at intermediate levels of added nitrate, as were mean nodule dry weights. A highly significant inverse relationship between nodule weight as a percentage of whole plant weight was found in Elaeagnus and Myrica. The observed response of Elaeagnus to added nitrate compared to other actinorhizal plants appears to demonstrate that root hair infected plants are much more sensitive to the inhibitory effects of added nitrate than plants infected by intercellular penetration. A sharp reduction in the presence of root hairs at high concentrations of nitrate was observed. This indicates that the inhibition of nodulation in some actinorhizal plant species results from nitrate induced root hair suppression.  相似文献   

16.
Lanfang Yang  Zucong Cai 《Plant and Soil》2006,283(1-2):265-274
The effect of photosynthesis on N2O emission from soil was investigated by shading soybean (Gycline max. L) plant at flowering, pod-setting and grain-filling stages. The results showed that by stopping photosynthesis through shading the plants stimulated N2O emission significantly at flowering stage and pod-setting stage, and suppressed N2O emission dramatically at grain-filling stage. At flowering stage, soybean species seem to rely mainly on fertilizer N and shaded plants decreased the N uptake. Interaction between the relative increase in available N for N2O production by shading and the presence of root exudates promoted N transformation (nitrification/denitrification) and N2O emission. At pod-setting stage, the available soil nitrogen seems to be a critical limiting factor and without substantial release of symbiotically fixed N through plant roots, resulted in a weak effect of shading on N2O emission. At grain-filling stage, available N for N2O production was derived from symbiotically fixed N and was greatly affected by photosynthesis. These results indicated that the effect of soybean growth on N2O emission from soil varies with plant growth stages as available N for N2O production is mainly from fertilizer N and organic mineralization during the early growth of soybean plants, while N2O emission is controlled by the quantity and perhaps also the quality of root exudates, which is closely related with plant photosynthesis in the late season of soybean growth.  相似文献   

17.
The effect of mineral N availability on nitrogen nutrition and biomass partitioning between shoot and roots of pea (Pisum sativum L., cv Baccara) was investigated under adequately watered conditions in the field, using five levels of fertiliser N application at sowing (0, 50, 100, 200 and 400 kg N ha–1). Although the presence of mineral N in the soil stimulated vegetative growth, resulting in a higher biomass accumulation in shoots in the fertilised treatments, neither seed yield nor seed nitrogen concentration was affected by soil mineral N availability. Symbiotic nitrogen fixation was inhibited by mineral N in the soil but it was replaced by root mineral N absorption, which resulted in optimum nitrogen nutrition for all treatments. However, the excessive nitrogen and biomass accumulation in the shoot of the 400 kg N ha–1 treatment caused crop lodging and slightly depressed seed yield and seed nitrogen content. Thus, the presumed higher carbon costs of symbiotic nitrogen fixation, as compared to root mineral N absorption, affected neither seed yield nor the nitrogen nutrition level. However, biomass partitioning within the nodulated roots was changed. The more symbiotic nitrogen fixation was inhibited, the more root growth was enhanced. Root biomass was greater when soil mineral N availability was increased: root growth was greater and began earlier for plants that received mineral N at sowing. Rooting density was also promoted by increased mineral N availability, leading to more numerous but finer roots for the fertilised treatments. However, the maximum rooting depth and the distribution of roots with depth were unchanged. This suggested an additional direct promoting effect of mineral N on root proliferation.  相似文献   

18.
The effect of two Bradyrhizobium japonicum strains (D344 and Urbana), on the frequency and intensity of infection by a VAM fungal Glomus sp. and the effect of VAM on biomass production by nodulating plants were tested in soybean growing in a soil containing low levels of accessible P and N. During the initial stage of vegetative growth, mycorrhiza frequency in roots inoculated with the two rhizobial strains did not differ. However, during flowering it was 178% higher in roots with the strain D344 than in the presence of the strain Ubrana. At final harvest (green pods) the VAM frequency did not differ in the presence of either strain. VAM positively affected biomass production, foliar concentrations of P, Zn and Cu, and number and dry matter yield of pods, but did not increase concentrations of total N and K. In nonmycorrhizal plants total nitrogenase activity (not nodule mass) and growth were higher with the rhizobial strain Urbana. The greatest nitrogenase activity, growth and yield occurred in the presence of the VAM fungus, and did not differ for plants with different strains of rhizobia.  相似文献   

19.
以武夷肉桂为研究对象,研究不同施氮量对乌龙茶幼龄茶树生长和生理的影响。结果表明,幼龄茶树对氮肥的需求不强烈,其新梢生物量、根生物量和总生物量以及茶叶产量随施氮量的增加而下降。茶树新梢全氮、叶绿素、游离氨基酸、茶多酚和咖啡碱的含量随施氮量的增加而增加,而茶树碳氮比随着施氮量增加而下降;但施氮并没有影响茶树总碳含量。老叶叶绿素含量、根全氮和硝态氮含量、新梢总糖含量与施氮量呈二次曲线回归关系,适度施氮促进根对氮的吸收、老叶叶绿素合成和新梢总糖代谢,过度施氮则相反。新梢生物量与其硝态氮含量和游离氨基酸总量显著负相关;根生物量与根碳氮比和新梢咖啡碱含量显著负相关;茎叶生物量和总生物量与根含氮量显著正相关,但与新梢硝态氮和氨基酸含量显著负相关。过度施氮造成茶树生产力下降的主要原因是因为过度施氮极显著提高了茶树氨基酸代谢水平,使用于茶树生长的碳代谢产物(如总糖)减少,进而影响茶树的生长。  相似文献   

20.
The impact of elevated pCO(2 )on N-metabolism of hydroponically grown wild-type and transformed tobacco plants lacking root nitrate reduction was studied in order to elucidate the effects on (i) nitrate uptake, (ii) long-distance transport of N, (iii) nitrate reduction with emphasis on root-NR, and (iv) the allocation of N between the root and shoot. The findings were related to alterations of growth rates. At elevated pCO(2 )the wild type exhibited higher growth rates, which were accompanied by an increase of NO(3)(-)-uptake per plant, due to a higher root:shoot ratio. Furthermore, elevated pCO(2 )enhanced nitrate reduction in the roots of the wild type, resulting in enhanced xylem-loading of organic N (amino-N) to supply the shoot with sufficient nitrogen, and decreased phloem-transport of organic N in a basipetal direction. Transformed tobacco plants lacking root nitrate reduction were smaller than the wild type and exhibited lower growth rates. Nitrate uptake per plant was decreased in transformed plants as a consequence of an impeded root growth and, thus, a significantly decreased root:shoot ratio. Surprisingly, transformed plants showed an altered allocation of amino-N between the root and the shoot, with an increase of amino-N in the root and a substantial decrease of amino-N in the shoot. In transformed plants, xylem-loading of nitrate was increased and the roots were supplied with organic N via phloem transport. Elevated pCO(2 )increased shoot-NR, but only slightly affected the growth rates of transformed plants, whereas carbohydrates accumulated at elevated pCO(2 )as indicated by a significant increase of the C/N ratio in the leaves of transformed plants. Unexpectedly, the C/N balance and the functional equilibrium between root and shoot growth was disturbed dramatically by the loss of nitrate reduction in the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号