首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stribinskis V  Gao GJ  Ellis SR  Martin NC 《Genetics》2001,158(2):573-585
RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa(3) cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.  相似文献   

2.
3.
RPM2 is identified here as a high-copy suppressor of isp42-3, a temperature-sensitive mutant allele of the mitochondrial protein import channel component, Isp42p. RPM2 already has an established role as a protein component of yeast mitochondrial RNase P, a ribonucleoprotein enzyme required for the 5' processing of mitochondrial precursor tRNAs. A relationship between mitochondrial tRNA processing and protein import is not readily apparent, and, indeed, the two functions can be separated. Truncation mutants lacking detectable RNase P activity still suppress the isp42-3 growth defect. Moreover, RPM2 is required for normal fermentative yeast growth, even though mitochondrial RNase P activity is not. The portion of RPM2 required for normal growth and suppression of isp42-3 is the same. We conclude that RPM2 is a multifunctional gene. We find Rpm2p to be a soluble protein of the mitochondrial matrix and discuss models to explain its suppression of isp42-3.  相似文献   

4.
Distinct metabolic pathways can intersect in ways that allow hierarchical or reciprocal regulation. In a screen of respiration-deficient Saccharomyces cerevisiae gene deletion strains for defects in mitochondrial RNA processing, we found that lack of any enzyme in the mitochondrial fatty acid type II biosynthetic pathway (FAS II) led to inefficient 5′ processing of mitochondrial precursor tRNAs by RNase P. In particular, the precursor containing both RNase P RNA (RPM1) and tRNAPro accumulated dramatically. Subsequent Pet127-driven 5′ processing of RPM1 was blocked. The FAS II pathway defects resulted in the loss of lipoic acid attachment to subunits of three key mitochondrial enzymes, which suggests that the octanoic acid produced by the pathway is the sole precursor for lipoic acid synthesis and attachment. The protein component of yeast mitochondrial RNase P, Rpm2, is not modified by lipoic acid in the wild-type strain, and it is imported in FAS II mutant strains. Thus, a product of the FAS II pathway is required for RNase P RNA maturation, which positively affects RNase P activity. In addition, a product is required for lipoic acid production, which is needed for the activity of pyruvate dehydrogenase, which feeds acetyl-coenzyme A into the FAS II pathway. These two positive feedback cycles may provide switch-like control of mitochondrial gene expression in response to the metabolic state of the cell.  相似文献   

5.
Lutz MS  Ellis SR  Martin NC 《Genetics》2000,154(3):1013-1023
The Saccharomyces cerevisiae nuclear gene RPM2 encodes a component of the mitochondrial tRNA-processing enzyme RNase P. Cells grown on fermentable carbon sources do not require mitochondrial tRNA processing activity, but still require RPM2, indicating an additional function for the Rpm2 protein. RPM2-null cells arrest after 25 generations on fermentable media. Spontaneous mutations that suppress arrest occur with a frequency of approximately 9 x 10(-6). The resultant mutants do not grow on nonfermentable carbon sources. We identified two loci responsible for this suppression, which encode proteins that influence proteasome function or assembly. PRE4 is an essential gene encoding the beta-7 subunit of the 20S proteasome core. A Val-to-Phe substitution within a highly conserved region of Pre4p that disrupts proteasome function suppresses the growth arrest of RPM2-null cells on fermentable media. The other locus, UMP1, encodes a chaperone involved in 20S proteasome assembly. A nonsense mutation in UMP1 also disrupts proteasome function and suppresses Deltarpm2 growth arrest. In an RPM2 wild-type background, pre4-2 and ump1-2 strains fail to grow at restrictive temperatures on nonfermentable carbon sources. These data link proteasome activity with Rpm2p and mitochondrial function.  相似文献   

6.
7.
8.
Initial steps in the synthesis of functional tRNAs require 5'- and 3'-processing of precursor tRNAs (pre-tRNAs), which in yeast mitochondria are achieved by two endonucleases, RNase P and RNase Z. In this study, using a combination of detergent-free Blue Native Gel Electrophoresis, proteomics and in vitro testing of pre-tRNA maturation, we reveal the physical association of these plus other mitochondrial activities in a large, stable complex of 136 proteins. It contains a total of seven proteins involved in RNA processing including RNase P and RNase Z, five out of six subunits of the mitochondrial RNA degradosome, components of the fatty acid synthesis pathway, translation, metabolism and protein folding. At the RNA level, there are the small and large rRNA subunits and RNase P RNA. Surprisingly, this complex is absent in an oar1Δ deletion mutant of the type II fatty acid synthesis pathway, supporting a recently published functional link between pre-tRNA processing and the FAS II pathway--apparently by integration into a large complex as we demonstrate here. Finally, the question of mt-RNase P localization within mitochondria was investigated, by GFP-tracing of a known protein subunit (Rpm2p). We find that about equal fractions of RNase P are soluble versus membrane-attached.  相似文献   

9.
The gene coding for the AU-rich RNA required for mitochondrial RNase P activity in Saccharomyces cerevisiae codes for a 490-base RNA while that in Candida glabrata codes for a 227-base RNA. We have detected a 140-nucleotide RNA coded by the mitochondrial DNA from Saccharomycopsis fibuligera by hybridization with an oligonucleotide complementary to a conserved sequence found in mitochondrial and prokaryotic RNase P RNAs. DNA sequence analysis of the mitochondrial DNA from the region coding for this RNA revealed a second conserved sequence block characteristic of RNase P RNA genes and the presence of a downstream tRNA(Pro) gene. Like previously characterized mitochondrial RNase P RNAs, this small RNA is extremely AU-rich. The discovery of this 140-base RNA suggests that naturally occurring RNase P RNAs may be quite small.  相似文献   

10.
11.
We have mapped a gene in the mitochondrial DNA of Candida (Torulopsis) glabrata and shown that it is required for 5' end maturation of mitochondrial tRNAs. It is located between the tRNAfMet and tRNAPro genes, the same tRNA genes that flank the mitochondrial RNase P RNA gene in the yeast Saccharomyces cerevisiae. The gene is extremely AT rich and codes for AU-rich RNAs that display some sequence homology with the mitochondrial RNase P RNA from S. cerevisiae, including two regions of striking sequence homology between the mitochondrial RNAs and the bacterial RNase P RNAs. RNase P activity that is sensitive to micrococcal nuclease has been detected in mitochondrial extracts of C. glabrata. An RNA of 227 nucleotides that is one of the RNAs encoded by the gene that we mapped cofractionated with this mitochondrial RNase P activity on glycerol gradients. The nuclease sensitivity of the activity, the cofractionation of the RNA with activity, and the homology of the RNA with known RNase P RNAs lead us to propose that the 227-nucleotide RNA is the RNA subunit of the C. glabrata mitochondrial RNase P enzyme.  相似文献   

12.
13.
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.  相似文献   

14.
A requisite step in the biosynthesis of tRNA is the removal of 5' leader sequences from tRNA precursors. We have detected an RNase P activity in yeast mitochondrial extracts that can carry out this reaction on a homologous precursor tRNA. This mitochondrial RNase P was sensitive to both micrococcal nuclease and protease, demonstrating that it requires both a nucleic acid and protein for activity. The presence of RNase P activity in vitro directly correlated with the presence of a locus on yeast mitochondrial DNA previously shown by genetic and biochemical studies to be required for tRNA maturation. The product of the locus, the 9S RNA, and this newly described mitochondrial RNase P activity cofractionated, providing further evidence that the 9S RNA is the RNA component of yeast mitochondrial RNase P.  相似文献   

15.
16.
17.
18.
19.
20.
RNAs that function in mitochondria are typically encoded by the mitochondrial DNA. However, the mitochondrial tRNAs of Trypanosoma brucei are encoded by the nuclear DNA and therefore must be imported into the mitochondrion. It is becoming evident that RNA import into mitochondria is phylogenetically widespread and is essential for cellular processes, but virtually nothing is known about the mechanism of RNA import. We have identified and characterized mitochondrial precursor tRNAs in T. brucei. The identification of mitochondrially located precursor tRNAs clearly indicates that mitochondrial tRNAs are imported as precursors. The mitochondrial precursor tRNAs hybridize to cloned nuclear tRNA genes, label with [alpha-32P]CTP using yeast tRNA nucleotidyltransferase and in isolated mitochondria via an endogenous nucleotidyltransferase-like activity, and are processed to mature tRNAs by Escherichia coli and yeast mitochondrial RNase P. We show that T. brucei mitochondrial extract contains an RNase P activity capable of processing a prokaryotic tRNA precursor as well as the T. brucei tRNA precursors. Precursors for tRNA(Asn) and tRNA(Leu) were detected on Northern blots of mitochondrial RNA, and the 5' ends of these RNAs were characterized by primer extension analysis. The structure of the precursor tRNAs and the significance of nuclear encoded precursor tRNAs within the mitochondrion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号