首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Orthodontic force application is well known to induce sterile inflammation, which is initially caused by the compression of blood vessels in tooth-supporting apparatus. The reaction of periodontal ligament cells to mechanical loading has been thoroughly investigated, whereas knowledge on tissue reactions of the dental pulp is rather limited. The aim of the present trial is to analyze the effect of orthodontic treatment on the induction and cellular regulation of intra-pulpal hypoxia. To investigate the effect of orthodontic force on dental pulp cells, which results in circulatory disturbances within the dental pulp, we used a rat model for the immunohistochemical analysis of the accumulation of hypoxia-inducible factor-1α in the initial phase of orthodontic tooth movement. To further examine the regulatory role of circulatory disturbances and hypoxic conditions, we analyze isolated dental pulp cells from human teeth with regard to their specific reaction under hypoxic conditions by means of flow cytometry, immunoblot, ELISA and real-time PCR on markers (Hif-1α, VEGF, Cox-2, IL-6, IL-8, ROS, p65). In vivo experiments showed the induction of hypoxia in dental pulp after orthodontic tooth movement. The induction of oxidative stress in human dental pulp cells showed up-regulation of the pro-inflammatory and angiogenic genes Cox-2, VEGF, IL-6 and IL-8. The present data suggest that orthodontic tooth movement affects dental pulp circulation by hypoxia, which leads to an inflammatory response inside treated teeth. Therefore, pulp tissue may be expected to undergo a remodeling process after tooth movement.  相似文献   

3.
Orthodontic tooth movement progresses by a combination of periodontal ligament (PDL) tissue and alveolar bone remodeling processes. Besides the remodeling of alveolar bone around the moving teeth, the major extracellular matrix (ECM) components of PDLs, collagens, are degenerated, degraded, and restructured. Matrix metalloproteinases (MMPs) and their specific inhibitors, tissue inhibitors of metalloproteinases (TIMPs), act in a co-ordinated fashion to regulate the remodeling of periodontal tissues. We hypothesized that the expression levels of the genes for MMP-2, MMP-9, and TIMPs 1–3 are increased transiently in the periodontal tissue during orthodontic tooth movement. To test this hypothesis, we employed an animal model of tooth movement using rats, as well as in situ hybridization to analyze the expression levels of Mmp-2, Mmp-9, and Timps 1-3. The expression levels of these genes increased transiently in cells of periodontal tissues, which include cementoblasts, fibroblasts, osteoblasts, and osteoclasts, at the compression side of the moving teeth. The transient increases in gene expression at the tension side were mainly limited to osteoblasts and cementoblasts. In conclusion, the expression levels of Mmp-2, Mmp-9, and Timps 1-3 increase transiently during orthodontic tooth movement at both the tension and compression sides. The expression of these genes is regulated differentially in the periodontal tissue of the tension side and compression side. This altered pattern of gene expression may determine the rate and extent of remodeling of the collagenous ECM in periodontal tissues during orthodontic tooth movement.  相似文献   

4.
Orthodontic force compresses the periodontal ligament promoting the expression of pro-inflammatory mediators and matrix metalloproteinases responsible for tooth movement. The extent in time while periodontal cells are being treated and the increment in the amount of mechanical stress caused by the orthodontic force is thought to regulate the levels of metalloproteinases in the periodontal tissue. To study the possible regulation in the activity of metalloproteinases 2, 3, 7, 9, and 10 by simulated orthodontic force, human periodontal ligament fibroblast cultures were centrifuged (141×g) for 30, 60, 90, and 120 min, simulating the orthodontic force. Cell viability, protein quantification, and activity of metalloproteinases by zymography were evaluated at 24, 48, and 72 h after centrifugation in both cell lysates and growth medium. The activity of the 72-kDa matrix metalloproteinase 2 was decreased at 24 h regardless of the duration of centrifugation and at 48 h in cells centrifuged for 30 min only. Decrease in the amount of total protein in lysates was seen at 48 and 72 h with no change in cell viability. The data seem to indicate that the amount of mechanical stress regulates the levels of secreted matrix metalloproteinase 2. In addition, the centrifugation as a model for simulated orthodontic force may be used as a simple and reliable method to study the role played by matrix metalloproteinases in periodontal ligament when submitted to mechanical force as occurring during tooth movement.  相似文献   

5.
Liu B  Li W  Li Y  Wang Z  Li H  Liu P  Fu J 《Molecular biology reports》2009,36(4):761-765
Isoproterenol (ISO) has been found to cause severe injury in the myocardium. The aim of this study was to investigate the protective effects of N-acetylcysteine (NAC) on ISO-induced myocardial injury in rats and its underlying mechanisms. Fouty male Wistar rats were randomly divided into four groups: control, ISO, NAC, and ISO + NAC group. Myocardial histopathological observation were performed; The activities of creatine kinase isoenzyme-MB (CK-MB) and lactate dehydrogenase (LDH) were examined; Myocardium TNF-αand IL-1β gene expressions were examined by RT-PCR analysis; Myocardial expressions of TNF-αand IL-1βproteins were observed by immunohistochemical assay and western blotting analysis. The myocardial injury induced by ISO was significantly reduced by the treatment of NAC as judged by the reduction of myocardial necrosis. Compared with ISO group, rats pre-injected with NAC showed a significant decrease in the activities of cardiac marker enzymes such as CK-MB and LDH in serum. NAC inhibits the pro-inflammatory factors expressions (TNF-αand IL-1β) stimulated by ISO. In conclusion, NAC exerts significant cardio-protective effects against ISO-induced myocardial injury in rats, likely regulating pro-inflammatory factors expressions.  相似文献   

6.
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading, and is supposed to be mediated by several host mediators, such as chemokines. In this study we investigated the pattern of mRNAs expression encoding for osteoblast and osteoclast related chemokines, and further correlated them with the profile of bone remodeling markers in palatal and buccal sides of tooth under orthodontic force, where tensile (T) and compressive (C) forces, respectively, predominate. Real-time PCR was performed with periodontal ligament mRNA from samples of T and C sides of human teeth submitted to rapid maxillary expansion, while periodontal ligament of normal teeth were used as controls. Results showed that both T and C sides exhibited significant higher expression of all targets when compared to controls. Comparing C and T sides, C side exhibited higher expression of MCP-1/CCL2, MIP-1α/CCL3 and RANKL, while T side presented higher expression of OCN. The expression of RANTES/CCL5 and SDF-1/CXCL12 was similar in C and T sides. Our data demonstrate a differential expression of chemokines in compressed and stretched PDL during orthodontic tooth movement, suggesting that chemokines pattern may contribute to the differential bone remodeling in response to orthodontic force through the establishment of distinct microenvironments in compression and tension sides.  相似文献   

7.
<正>畸牙移动是在机械力的作用下,通过对牙周膜产生牵张或压缩的力来引起牙周组织在生理限度内的组织改建,从而达到牙齿移动、矫治畸形的目的。由于没有明显的年龄限制,正畸矫治在全球范围已变得越来越普遍。因此,相关的研究也日益增多。牙齿移动的生物学基础是正畸力作用于牙周组织激活一系列信号转导通路,进而引起牙周膜的修复改建。为指导临床、加速正畸矫治疗程提供新的思路,本文综述了近年来有关正畸牙移动相关信号通路的研究进展。发现最新的研究集中在MAPK信号通路,Wnt/β-catenin信号通路,PI3K/AKt/m TOR信号通路,BMP-2信号通路,Caspase-3介导的凋亡通路较多。但是正畸牙移动引起的牙周组织改建是一个多种生物力学信号转导通路相互调节相互作用的过程,对于上述信号通路之间的相互关系还有待于我们更进一步的探索。  相似文献   

8.
Brain capillary endothelial cells form the blood–brain barrier (BBB), a highly selective permeability membrane between the blood and the brain. Besides tight junctions that prevent small hydrophilic compounds from passive diffusion into the brain tissue, the endothelial cells express different families of drug efflux transport proteins that limit the amount of substances penetrating the brain. Two prominent efflux transporters are the breast cancer resistance protein and P-glycoprotein (P-gp). During inflammatory reactions, which can be associated with an altered BBB, pro-inflammatory cytokines are present in the systemic circulation. We, therefore, investigated the effect of the pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on the expression and activity of BCRP and P-gp in the human hCMEC/D3 cell line. BCRP mRNA levels were significantly reduced by IL-1β, IL-6 and TNF-α. The strongest BCRP suppression at the protein level was observed after IL-1β treatment. IL-1β, IL-6 and TNF-α also significantly reduced the BCRP activity as assessed by mitoxantrone uptake experiments. P-gp mRNA levels were slightly reduced by IL-6, but significantly increased after TNF-α treatment. TNF-α also increased protein expression of P-gp but the uptake of the P-gp substrate rhodamine 123 was not affected by any of the cytokines. This in vitro study indicates that expression levels and activity of BCRP, and P-gp at the BBB may be altered by acute inflammation, possibly affecting the penetration of their substrates into the brain.  相似文献   

9.
The aim of the present study was to investigate experimentally the mechanical properties of tooth deflection under external loading. These properties have a significant impact on tooth movement during orthodontic treatment. The stresses and strains caused by tooth movement influence bone remodelling, which is the basis of orthodontic treatment. The movement of a tooth as a direct reaction to the forces acting on it is termed "initial" movement. It is nonlinear and has a clearly time-dependent component. While the initial tooth movement represents the totality of the reaction mechanisms of all the tissues of the tooth unit, it is determined primarily by the mechanical properties of the periodontal ligament (PDL). The PDL is the softest tissue of the tooth unit and is therefore subject to the largest deformations when forces act on the crown of the tooth. The objective of orthodontic treatment is to achieve as precise and rapid tooth movement as possible, without provoking such undesired effects as bone and root resorption. To enable the implementation of an optimal orthodontic force system that meets these requirements, a thorough knowledge of the biomechanics of tooth movement is a must.  相似文献   

10.
11.
This study examined the kinds of desmosomal proteins in the human periodontal ligament fibroblasts (PDLFs). The PDLFs obtained from young and older patients were cultured and the amounts of desmosomal proteins were measured by ELISA with antibodies to desmoplakins, desmogleins, and desmocollins. Cultured cells and tissue sections of the human periodontal ligament were immunostained with the same antibodies. Expression of desmosomal proteins in the PDLFs was clearly demonstrated both by ELISA and the immunohistochemical studies, suggesting the existence of desmosome-like junctions in the PDLFs. The junctions are considered to protect gap junctions in the PDLFs against cell transformation caused by cell contraction, which may relate to tooth eruption and repair of periodontal tissue, and/or strong occlusal forces. Statistically significant differences (P < 0.0001) in the expression of desmoplakins and desmogleins between younger and older patients were observed in this study.  相似文献   

12.
13.
Tobacco smoking is the main risk factor associated with chronic periodontitis, but the mechanisms that underlie this relationship are largely unknown. Recent reports proposed that nicotine plays an important role in tobacco-related morbidity by acting through the nicotinic acetylcholine receptors (nAChRs) expressed by non-neuronal cells. The aim of this study was to investigate whether α7 nAChR was expressed in periodontal tissues and whether it functions by regulating IL-1β in the process of periodontitis. In vitro, human periodontal ligament (PDL) cells were cultured with 10−12 M of nicotine and/or 10−9 M of alpha-bungarotoxin (α-Btx), a α7 nAChR antagonist. The expression of α7 nAChR and IL-1β in PDL cells and the effects of nicotine/α-Btx administration on their expression were explored. In vivo, an experimental periodontitis rat model was established, and the effects of nicotine/α-Btx administration on expression of α7 nAChR and development of periodontitis were evaluated. We found that α7 nAChR was present in human PDL cells and rat periodontal tissues. The expressions of α7 nAChR and IL-1β were significantly increased by nicotine administration, whereas α-Btx treatment partially suppressed these effects. This study was the first to demonstrate the functional expression of α7 nAChR in human PDL cells and rat periodontal tissues. Our results may be pertinent to a better understanding of the relationships among smoking, nicotine, and periodontitis.  相似文献   

14.
Heat shock proteins (HSPs) are molecular chaperones that maintain intracellular protein homeostasis and ensure survival of cells. Continuous orthodontic force on the tooth is considered to be a type of physical stress loaded to the periodontal ligament (PDL). However, little is known about the role of HSPs during tooth movement. This study was performed to examine the expression of HSPs in the PDL during tooth movement using laser microdissection, microarray analysis, real-time RT-PCR and immunohistochemistry. Gene expression of HSPA1A in the pressure zone of the PDL was higher during 6 h of tooth movement than in the control group. Expression of HSPA1A decreased with time. HSPA1A was also detected in the pressure zone of the PDL at the protein level 24 h after the initial tissue change. These results strongly suggest that expression of HSPA1A in the PDL during early stages of tooth movement is a critical factor for tissue reaction.  相似文献   

15.
The periodontal ligament (PDL) is one of the connective tissues located between the tooth and bone. It is characterized by rapid turnover. Periodontal ligament fibroblasts (PDLFs) play major roles in the rapid turnover of the PDL. Microarray analysis of human PDLFs (HPDLFs) and human dermal fibroblasts (HDFs) demonstrated markedly high expression of chemokine (CXC motif) ligand 12 (CXCL12) in the HPDLFs. CXCL12 plays an important role in the migration of mesenchymal stem cells (MSCs). The function of CXCL12 in the periodontal ligament was investigated in HPDLFs. Expression of CXCL12 in HPDLFs and HDFs was examined by RT-PCR, qRT-PCR and ELISA. Chemotactic ability of CXCL12 was evaluated in both PDLFs and HDFs by migration assay of MSCs. CXCL12 was also immunohistochemically examined in the PDL in vivo. Expression of CXCL12 in the HPDLFs was much higher than that in HDFs in vitro. Migration assay demonstrated that the number of migrated MSCs by HPDLFs was significantly higher than that by HDFs. In addition, the migrated MSCs also expressed CXCL12 and several genes that are familiar to fibroblasts. CXCL12 was immunohistochemically localized in the fibroblasts in the PDL of rat molars. The results suggest that PDLFs synthesize and secrete CXCL12 protein and that CXCL12 induces migration of MSCs in the PDL in order to maintain rapid turnover of the PDL.  相似文献   

16.
Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement.  相似文献   

17.
The intricate interactions that regulate relationships between endogenous tissue cells and infiltrating immune cells in the rheumatic joint, particularly in rheumatoid arthritis (RA), were the subject of the meeting. A better understanding of these interactions might help to define intervention points that could be used to develop specific therapies. The presentations and discussions highlighted the fact that, once chronic inflammation is established, several pro-inflammatory loops involving tumour necrosis factor (TNF)-α and interleukin (IL)-1β can be defined. Direct cellular contact with stimulated T lymphocytes induces TNF-α and IL-1β in monocytes which in turn induce functions in fibroblast-like synoviocytes. The latter include the production of stromal cell-derived factor-1α (SDF-1α) which enhances the expression of CD40L in T cells, which stimulates SDF-1α production in synoviocytes, which in turn protects T and B cells from apoptosis and enhances cell recruitment thus favoring inflammatory processes. IL-1β and TNF-α also induce IL-15 in fibroblast-like synoviocytes, which induces the production of IL-17 which in turn potentiates IL-1β and TNF-α production in monocyte-macrophages. This underlines the importance of TNF-α and IL-1β in RA pathogenesis, and helps explain the efficiency of agents blocking the activity of these cytokines in RA. Factors able to block the induction of cytokine production (such as apolipoprotein A-I [apo A-I] and interferon [IFN]-β) might interfere more distally in the inflammatory process. Furthermore, stimulated T lymphocytes produce osteoclast differentiation factor (ODF), which triggers erosive functions of osteoclasts. Therefore, factors capable of affecting the level of T lymphocyte activation, such as IFN-β, IL-15 antagonist, or SDF-1α antagonist, might be of interest in RA therapy.  相似文献   

18.
Protein O‐linked N‐acetylglucosamine (O‐GlcNAc) is a post‐translational modification of intracellular proteins that regulates several physiological and pathophysiological process, including response to various stressors. However, O‐GlcNAc's response to mechanical stress has not been investigated yet. As human periodontal ligament (PDL) cells are stimulated by compression force during orthodontic tooth movement that results in structural remodelling, in this study we investigated whether mechanical stress induces any alteration in protein O‐GlcNAc in PDL cells. In this study, PDL cells isolated from premolars extracted for orthodontic indications were exposed to 0, 1.5, 3, 7 and 14 g/cm2 compression forces for 12 hours. Cell viability was measured by flow cytometry, and protein O‐GlcNAc was analysed by Western blot. Cellular structure and intracellular distribution of O‐GlcNAc was studied by immunofluorescence microscopy. We found that between 1.5 and 3 g/cm2 mechanical compression, O‐GlcNAc significantly elevated; however, at higher forces O‐GlcNAc level was not increased. We also found that intracellular localization of O‐GlcNAc proteins became more centralized under 2 g/cm2 compression force. Our results suggest that structural changes stimulated by compression forces have a significant effect on the regulation of O‐GlcNAc; thus, it might play a role in the mechanical stress adaptation of PDL cells.  相似文献   

19.
Flagellin, a principal component of bacterial flagella, is a virulence factor that is recognized by the innate immune system. Recognition of flagellin by innate immune receptors stimulates the production of cytokines necessary for the development of effective immunity. Here, we demonstrated that the intranasal (i.n.) instillation of different amount of Escherichia coli K-12 flagellin preparation (0.5, 1, 2, 4 μg) in BALB/c mice induced pro-inflammatory immune response. Instillation i.n. of 1 μg of flagellin induced the maximum expression of interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) mRNA and production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) in mice lungs. The same dose of flagellin induced neutrophil polymorphonuclear cells infiltration in peribronchial and perivascular regions. High number of neutrophil in bronchoalveolar lavage fluid was found at 24 h after i.n. instillation of flagellin (1 μg). These findings were concomitant with the maximum production of myeloperoxidase and nitric oxide in mice lungs. Present study showed that the maximum pro-inflammatory mediator levels were found when mice instilled i.n. with 1 μg E. coli flagellin. The amount of flagellin of E. coli K-12 that achieve the maximum stimulation of mucosal pro-inflammatory immune response in mice lungs was explored in this study.  相似文献   

20.
Connective tissues are responsive to mechanical forces. In orthodontic tooth movement it appears that the periodontal ligament (PDL) is the source of a pleuropotential cell population and extracellular matrix structure which translates mechanical perturbation information into a host of cellular events. These include proliferation, repair, differentiation, and shape change. We have designed, built, and tested a simple, adaptable machine which enables us to examine molecular changes or events in the cell nucleus, cell membrane, and the cytoskeleton of any eukasytic cell that will adhere to a membrane. These responses to clinically simulated forces applied to an in vitro system can be measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号