首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
The hydrophobic region of the signal peptide of the OmpA protein of the Escherichia coli outer membrane was extensively altered in its hydrophobicity and predicted secondary structure by site-specific mutagenesis. The mutated signal peptides were fused to nuclease A from Staphylococcus aureus, and the function of the signal peptide was examined by measuring the rate of processing of the signal peptide. Six of the 12 mutated signal peptides in the nuclease hybrid were processed faster than the wild-type. In particular, the processing of the mutated signal peptide in which the alanine residue at position 9 was substituted with a valine residue was enhanced almost twofold over the processing of the wild-type signal peptide. In addition, the production of nuclease A fused with this mutated signal peptide also increased twofold. However, these effects were not observed when the mutated signal peptide was fused to TEM beta-lactamase. Analysis of the present mutations suggests that both overall hydrophobicity and distinct structural requirements in the hydrophobic region have important roles in signal peptide function.  相似文献   

2.
On the basis of the biophysical studies on the synthetic mutant (Ile-8----Asn) OmpA signal peptide in the preceding paper (Hoyt, D. C., and Gierasch, L.M. (1991) J. Biol. Chem. 266, 14406-14412), the in vivo effects of the same mutation were examined by fusing the mutant OmpA signal sequence to Staphylococcus aureus nuclease or TEM beta-lactamase. The mutation in which the isoleucine residue at position 8 of the OmpA signal sequence of Escherichia coli was replaced with a neutral polar residue, asparagine, resulted in a defective signal peptide. The mutant signal sequence was unable to be processed, and the precursor molecule accumulated in the cytoplasmic as well as in the membrane fractions, indicating that the Ile-8----Asn OmpA signal sequence is not competent for translocating nuclease A or beta-lactamase across the membrane. This result is consistent with the in vitro studies on the Ile-8----Asn OmpA signal peptide, which indicated that the mutant signal peptide was unable to penetrate into the hydrophobic core of the lipid bilayer. Other asparagine or glutamine substitution mutations in the hydrophobic region of the OmpA signal sequence were also examined. Interestingly, the OmpA signal sequence with either Ile-8----Gln, Val-10----Asn, or Leu-12----Asn mutation was completely defective as the Ile-8----Asn OmpA signal sequence, while the Ile-6----Asn and Ala-9----Asn OmpA nucleases were able to be processed to secrete nuclease, although the processing occurred at a much slower rate than the wild-type OmpA nuclease. These results indicate that the defects depend on the position of the lesion in the hydrophobic core of the OmpA signal sequence.  相似文献   

3.
Cleavage of preprolactin (pPL) by detergent-solubilized signal peptidase produced mature prolactin and two small peptides derived from the signal peptide region of the pPL molecule. The production of both peptides was dependent on functional signal peptidase; the peptides were not generated at detergent concentrations that abolished signal peptidase activity. The amount of both peptides was proportional to the concentration of signal peptidase in the assay. The appearance of both peptides was insensitive to protease inhibitors, as was signal peptidase activity. The size, labeling characteristics, and amino acid sequence of the larger peptide, peptide 1, corresponded to those of the intact signal peptide of pPL. The smaller peptide, peptide 2, lacked the carboxy terminus of the signal peptide, and was, therefore, a fragment of intact signal peptide. These results demonstrate the endoproteolytic nature of signal peptidase.  相似文献   

4.
Dual functions of the signal peptide in protein transfer across the membrane   总被引:14,自引:0,他引:14  
J Coleman  M Inukai  M Inouye 《Cell》1985,43(1):351-360
Most secretory proteins in both prokaryotic and eukaryotic cells are synthesized from a precursor with an amino-terminal extension of 20 to 25 amino acid residues called a signal peptide. These signal peptides are removed during translocation of the secretory proteins across the membrane. When two precursor structures are fused, the internalized second signal peptide was found to exert two different roles, depending upon either the distance between the two signal peptides, or whether the first signal peptide functions cotranslationally or posttranslationally. One role is to function as the usual signal peptide to translocate the protein downstream of the internal signal peptide. The other role is to function as a stop-transfer signal to create a transmembrane protein with the second signal peptide anchoring the protein in the membrane.  相似文献   

5.
The pCloDF13-encoded bacteriocin release protein (BRP) is a lipoprotein which is synthesized as a precursor with an amino-terminal signal peptide that appears to be stable after cleavage. The role of the stable signal peptide in the functioning of the BRP was studied with respect to the release of cloacin DF13, 'lysis' and leakage of periplasmic proteins. The BRP gene fragment encoding the stable signal peptide was replaced by a fragment encoding the unstable peptide of the murein lipoprotein (Lpp). The resulting hybrid protein was normally acylated and processed by signal peptidase II, leaving no stable signal peptide in the cells. Expression of the hybrid protein did not result in the specific release of cloacin DF13, whereas 'lysis' and the release of periplasmic enzymes were unaffected. These results indicated a role for the stable BRP signal peptide in the translocation of cloacin DF13 across the cytoplasmic membrane.  相似文献   

6.
The results of experiments with the inhibitory signal presented to rats after the positive one, showed the significance of the negative signal memory trace which interrupted alimentary behaviour and considerably accelerated its full extinction in response to the previously positive signal. Its significance is shown in experiments with amnesia produced by electroshock. According to the suggested concept negative conditioned reflexes are a result of formation of a temporary connection between memory traces of the negative conditioned signal and the non-reinforcement of this signal.  相似文献   

7.
The amino acids corresponding to the cleavage site of a hybrid preprotein containing a chicken lysozyme signal and a mature portion of human lysozyme were altered. The processing of mutant signals of -3Pro and -3Asp/-1Ala decreased remarkably, while that of -2Pro was 75% of that of the native signal. The major cleavage site of -3Pro was the same as that of the native signal, but that of the -2Pro and -3Asp/-1Ala signals was shifted one residue closer to the N-terminal side than the original site. The cleavage of the -2Pro signal, which was identical to the native processing of pheasant prelysozyme, suggested that the signal peptidases in yeast and bird are similar.  相似文献   

8.
The parallel polarization electron paramagnetic resonance (EPR) method has been applied to investigate manganese EPR signals of native S1 and S3 states of the water oxidizing complex (WOC) in photosystem (PS) II. The EPR signals in both states were assigned to thermally excited states with S=1, from which zero-field interaction parameters D and E were derived. Three kinds of signals, the doublet signal, the singlet-like signal and g=11-15 signal, were detected in Ca2+-depleted PS II. The g=11-15 signal was observed by parallel and perpendicular modes and assigned to a higher oxidation state beyond S2 in Ca2+-depleted PS II. The singlet-like signal was associated with the g=11-15 signal but not with the Y(Z) (the tyrosine residue 161 of the D1 polypeptide in PS II) radical. The doublet signal was associated with the Y(Z) radical as proved by pulsed electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. The electron transfer mechanism relevant to the role of Y(Z) radical was discussed.  相似文献   

9.
The bacteriocin release protein (BRP) mediates the secretion of cloacin DF13. The BRP precursor is slowly processed to yield the mature BRP and its stable signal peptide which is also involved in cloacin DF13 secretion. The function of the stable BRP signal peptide was analysed by constructing two plasmids. First, the stable BRP signal peptide was fused to the murein lipoprotein and, second, a stop codon was introduced after the BRP signal sequence. Exchange of the unstable murein lipoprotein signal peptide for the stable BRP signal peptide resulted in an accumulation of precursors of the hybrid murein lipoprotein. This indicated that the BRP signal peptide, as part of this hybrid precursor, is responsible for the slow processing. The stable BRP signal peptide itself was not able to direct the transfer of cloacin DF13 into the periplasmic space or into the culture medium. Over-expression of the BRP signal peptide was lethal and caused 'lysis'. Subcellular fractionation experiments revealed that the BRP signal peptide is located exclusively in the cytoplasmic membrane whereas the mature BRP, targeted by either the stable BRP signal peptide or the unstable Lpp signal peptide, is located in both the cytoplasmic and outer membrane. These results are in agreement with the hypothesis that the stable signal peptide and the mature BRP together are required for the passage of cloacin DF13 across the cell envelope.  相似文献   

10.
The prlC gene product of Escherichia coli can be altered by mutation so that it restores export of proteins with defective signal sequences. The strongest suppressor, prlC8, restores processing of a mutant signal sequence to a rate indistinguishable from the wild-type. Data obtained by changing gene dosage of the dominant suppressor and its specificity for different signal sequence mutations suggest that PrlC8 interacts directly with the hydrophobic core of the signal sequence. Despite the fact that signal sequence processing appears to be mediated by leader peptidase, the processed mature protein is not translocated efficiently from the cytoplasm. Results obtained with various double mutants indicate that PrlC8-mediated processing of mutant signal sequences does not require components of the cellular export machinery such as SecA, SecB or PrlA (SecY) and that the block in translocation from the cytoplasm occurs because PrlA (SecY) fails to recognize the defective signal sequence. We suggest that PrlC8 directs insertion of the mutant signal sequence into the membrane bilayer to an extent that processing by leader peptidase can occur. This reaction is novel in that it has not been observed previously in vivo.  相似文献   

11.
The manganese complex (Mn4) which is responsible for water oxidation in photosystem II is EPR detectable in the S2-state, one of the five redox states of the enzyme cycle. The S2-state is observable at 10?K either as an EPR multiline signal (spin S?=?1/2) or as a signal at g?=?4.1 (spin S?=?3/2 or 5/2). It has recently been shown that the state responsible for the multiline signal is converted to that responsible for the g?=?4.1 signal upon the absorption of near-infrared light [Boussac A, Girerd J-J, Rutherford AW (1996) Biochemistry 35?:?6984–6989]. It is shown here that the yield of the spin interconversion may be variable and depends on the photosystem II (PSII) preparations. The EPR multiline signal detected after near-infrared illumination, and which originates from PSII centers not susceptible to the near-infrared light, is shown to be different from that which originates from infrared-susceptible PSII centers. The total S2-multiline signal results from the superposition of the two multiline signals which originate from these two PSII populations. One S2 population gives rise to a "narrow" multiline signal characterized by strong central lines and weak outer lines. The second population gives rise to a "broad" multiline signal in which the intensity of the outer lines, at low and high field, are proportionally larger than those in the narrow multiline signal. The larger the relative amplitude of the outer lines at low and high field, the higher is the proportion of the near-infrared-susceptible PSII centers and the yield of the multiline to g?=?4.1 signal conversion. This inhomogeneity of the EPR multiline signal is briefly discussed in terms of the structural properties of the Mn4 complex.  相似文献   

12.
The interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with different phospholipid vesicles was investigated by fluorescence techniques, using a synthetic mutant signal peptide in which valine at position -8 in the hydrophobic sequence was replaced by tryptophan. First it was established that this mutation in the signal sequence of prePhoE does not affect in vivo and in vitro translocation efficiency and that the biophysical properties of the synthetic mutant signal peptide are similar to those of the wild-type signal peptide. Next, fluorescence experiments were performed which showed an increase in quantum yield and a blue shift of the emission wavelength maximum upon interaction of the signal peptide with lipid vesicles, indicating that the tryptophan moiety enters a more hydrophobic environment. These changes in intrinsic fluorescence were found to be more pronounced in the presence of phosphatidylglycerol (PG) or cardiolipin (CL) than with phosphatidylcholine (PC). In addition, quenching experiments demonstrated a shielding of the tryptophan fluorescence from quenching by the aqueous quenchers iodide and acrylamide upon interaction of the signal peptide with lipid vesicles, a shielding in the case of acrylamide that was more pronounced in the presence of negatively charged lipids. Finally it was found that acyl chain brominated lipids incorporated into phospholipid bilayers were able to quench the tryptophan fluorescence of the signal peptide, with the quenching efficiency in CL vesicles being much higher than in PC vesicles. The results clearly demonstrate that the PhoE signal peptide interacts strongly with different lipid vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study. The spko mutant (mutate a.a. 189–193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is. Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120–150) with the E.R.-associated domain (a.a.1–50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein by SPP. Electronic Supplementary MaterialThe online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

14.
A functional interaction between the signal sequence and the translation apparatus which may serve as a first step in chain targeting to the membrane is described. To this end, we exploited the powerful technique of molecular cloning in a procaryotic system and the well characterized translocation system of mammalian endoplasmic reticulum. The signal peptide of subunit B of the heat labile enterotoxin of Escherichia coli (EltB) was fused to several proteins. Single base substitutions were introduced in the signal peptide and their effect on protein synthesis and translocation was studied. We sought a single amino acid substitution which may define certain steps in the coordinated regulation of chain synthesis and targeting to the membrane. The substitution of proline for leucine at residue -8 in the signal peptide abolished all known functions of the signal peptide. In contrast to wild type signal peptide, the mutant signal peptide did not lead to arrest of nascent chain synthesis by signal recognition particle or translocation of the precursor protein across the membrane of the endoplasmic reticulum. Furthermore, the mutant signal peptide was not cleaved by purified E. coli signal peptidase. Interestingly, the mutation resulted in about a 2-fold increase in the rate of synthesis of the precursor protein, suggesting a role for the signal peptide in regulating the synthesis of the nascent secretory chain as a means of ensuring early and efficient targeting of this chain to the membrane. This role might involve interaction of the signal peptide with components of the translation apparatus and/or endogenous signal recognition particle. These results were obtained with three different fusion proteins carrying the signal peptide of EltB thus leading to the conclusion that the effect of the mutation on the structure and function of the signal peptide is independent of the succeeding sequence to which the signal peptide is attached.  相似文献   

15.
The initial step of the intracellular transport of G protein-coupled receptors, their insertion into the membrane of the endoplasmic reticulum, follows one of two different pathways. Whereas one group uses the first transmembrane domain of the mature receptor as an uncleaved signal anchor sequence for this process, a second group possesses additional cleavable signal peptides. The reason this second subset requires the additional signal peptide is not known. Here we have assessed the functional significance of the signal peptide of the endothelin B (ET(B)) receptor in transiently transfected COS.M6 cells. A green fluorescent protein-tagged ET(B) receptor mutant lacking the signal peptide was nonfunctional and retained in the endoplasmic reticulum, suggesting that it has a folding defect. To determine the defect in more detail, ET(B) receptor fragments containing the N-terminal tail, first transmembrane domain, and first cytoplasmic loop were constructed. We assessed N tail translocation across the endoplasmic reticulum membrane in the presence and absence of a signal peptide and show that the signal peptide is necessary for N tail translocation. We postulate that signal peptides are necessary for those G protein-coupled receptors for which post-translational translocation of the N terminus is impaired or blocked by the presence of stably folded domains.  相似文献   

16.
Ott CM  Lingappa VR 《Biochemistry》2004,43(38):11973-11982
Biosynthesis of the prion protein at the endoplasmic reticulum generates multiple topological forms. The topology of an individual chain is determined first by the localization of the N terminus and then by potential integration of the transmembrane domain into the lipid bilayer. Here, we provide the first evidence that signal sequences affect the latter of these events by demonstrating that some but not other signal sequences and signal sequence mutations result in significant increases in the fraction of prion protein nascent chains that integrate into the lipid bilayer. Through analysis of the prolactin signal sequence, an especially poor integration effector, we find that the N terminal and hydrophobic regions of the signal sequence affect integration most significantly. Mutations in either region result in a considerable increase in the number of chains that integrate. The effect of the signal sequence cannot be attributed to timing of signal cleavage or the state of the ribosome membrane junction, parameters previously found to affect protein biogenesis. We also present evidence that signal sequences that are poor integration effectors can promote integration under experimental conditions that allow the nascent chain more time to integrate. These findings reveal a previously unappreciated relationship between signal sequences and transmembrane integration.  相似文献   

17.
We examined the effects of synthetic signal peptides from the wild-type, export-defective mutant and its revertant species of ribose-binding protein on the phase properties of lipid bilayers. The lateral segregation of phosphatidylglycerol (PG) in the lipid bilayer was detected through quenching between NBD-PGs upon the reconstitution of signal peptide into the liposome made with the Escherichia coli inner membrane composition. The tendency of lipid segregation was highly dependent on the export competency of signal peptides in vivo, with a decreasing order of wild-type, revertant, and mutant species. The colocalizations of pyrene-PG with BODIPY-PG were also induced by the signal peptides, confirming the phase separation of the acidic phospholipid. The wild-type and revertant signal peptides predominantly formed alpha-helical conformations with the presence of acidic phospholipid as determined by circular dichroism spectroscopy. In addition, they restricted the motion of lipid acyl chains as monitored by fluorescence anisotropy of DPH, suggesting a deep penetration of signal peptide into the lipid bilayer. However, the alpha-helical content of mutant signal peptide was only about half that of the wild-type or revertant peptide with a significantly smaller degree of penetration into the bilayer. An association of the defective signal peptides into the membrane was affected by salt extraction, whereas the functional ones were not. The aforementioned results indicate that the functionality of signal peptide is accomplished through its topologies in the membrane and also by its ability to induce lateral segregation of acidic phospholipid. We propose that the clustering of acidic phospholipid by the functional signal peptide is responsible for the formation of non-bilayer membrane structure, thereby promoting an efficient translocation of secretory proteins.  相似文献   

18.
Coronavirus spike (S) proteins are responsible for binding and fusion with target cells and thus play an essential role in virus infection. Recently, we identified a dilysine endoplasmic reticulum (ER) retrieval signal and a tyrosine-based endocytosis signal in the cytoplasmic tail of the S protein of infectious bronchitis virus (IBV). Here, an infectious cDNA clone of IBV was used to address the importance of the S protein trafficking signals to virus infection. We constructed infectious cDNA clones lacking the ER retrieval signal, the endocytosis signal, or both. The virus lacking the ER retrieval signal was viable. However, this virus had a growth defect at late times postinfection and produced larger plaques than IBV. Further analysis confirmed that the mutant S protein trafficked though the secretory pathway faster than wild-type S protein. A more dramatic phenotype was obtained when the endocytosis signal was mutated. Recombinant viruses lacking the endocytosis signal (in combination with a mutated dilysine signal or alone) could not be recovered, even though transient syncytia were formed in transfected cells. Our results suggest that the endocytosis signal of IBV S is essential for productive virus infection.  相似文献   

19.
An interaction between an N-terminal signal sequence and the translocon leads to the initiation of protein translocation into the endoplasmic reticulum lumen. Subsequently, folding and modification of the substrate rapidly ensue. The close temporal coordination of these processes suggests that they may be structurally and functionally coordinated as well. Here we show that information encoded in the hydrophobic domain of a signal sequence influences the timing and efficiency of at least two steps in maturation, namely N-linked glycosylation and signal sequence cleavage. We demonstrate that these consequences correlate with and likely stem from the nature of the initial association made between the signal sequence and the translocon during the initiation of translocation. We propose a model by which these maturational events are controlled by the signal sequence-translocon interaction. Our work demonstrates that the pathway taken by a nascent chain through post-translational maturation depends on information encoded in its signal sequence.  相似文献   

20.
Over the last 20 years the JAK/STAT signal transduction pathway has been extensively studied. An enormous amount of data on different cell signal transduction pathways is now available. The JAK/STAT signal transduction pathway is one of the intracellular signaling pathways activated by cytokines and growth factors that was first studied in the hematopoietic system, but recent data demonstrate that this signal transduction is also greatly utilized by other systems. The JAK/STAT pathway is a signaling cascade that links the activation of specific cell membrane receptors to nuclear gene expression. This review is focused on the role of JAK/STAT signal transduction pathway activation in the central nervous system (CNS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号