首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DINAR  M.; STEVENS  M. A. 《Annals of botany》1982,49(4):477-483
The effect of temperature on sucrose uptake, and changes inlevels of starch, hexoses and sucrose in detached tomato fruitswas used to investigate the role of the sink in regulation ofcarbon import. Sucrose uptake was lower at 5 °C and greaterat 40 °C than at 25 °C. Conversion of radioactive componentsto starch was lower at both 5 °C and 40 °C than at 25°C, while the levels of non-radioactive starch was similarat all three temperatures. There was a depletion of glucoseand fructose in fruits at 40 °C. Uptake of sucrose froman agar medium by detached tomato fruits was negatively correlatedwith initial sucrose content of the fruit. The results indicatethat carbon import by tomato fruits is largely determined bysucrose levels which can be affected by metabolic activity. Lycopersicon esculentum L., tomato, fruit, sucrose uptake, temperature, carbon metabolism  相似文献   

2.
Changes in tomato fruit expansion rate and carbohydrate content have been assessed during treatments designed to alter the carbon import rate. Because fruit expansion is sensitive to plant water status, the relationship with carbon import is difficult to assess, and thus, the diameter growth rate of young fruit was measured on plants maintained at positive water potentials. The detached top metre of a tomato plant was supplied with water, through the cut stem base, at a pressure of 0.08 MPa. Developing fruit on the stem continued to grow at high rates for up to 2 d. Fruit diameter growth rate after plant detachment was directly proportional to temperature. Plants acclimated to different continuous irradiances for 5 d before detachment gave fruit growth rates after plant detachment which were directly proportional to the irradiance up to 7 MJ m−2d−1 photosynthetically active radiation (PAR). In continuous darkness, fruit growth rate remained unchanged for 20 h and then declined to less than 40% of the original rate over the following 30 h. On re-exposure to light, about 5 h elapsed before fruit growth rate increased but the growth rate stabilized at approximately 50% of the rate in continuously illuminated plants. During darkness, both fruit starch and hexose content decreased in comparison to illuminated controls, but on re-illumination, carbohydrate content increased before carbon was allocated to structural growth. Heat-killing the phloem of the fruit pedicel caused an immediate, but temporary, cessation of growth. After a partial recovery, expansion growth continued, but more slowly than in untreated fruit and at steadily declining rates. Starch and hexose sugars were not used to provide substrates for growth and starch synthesis was maintained. Continuing cell expansion was assumed to have been supported by water import via the xylem. Thus, fruit expansion may be related to carbon accumulation in most circumstances, but the changing allocation of imported carbon to storage and cell expansion may modify this relationship.  相似文献   

3.
In general, a mature green tomato will ripen and turn red on the vine or off the vine. Interestingly, an unripe green (UG) tomato also will turn red after being detached from the plant, but the mechanism behind this is unclear. Our study showed that detached UG fruits were able to become red-ripened at the room temperature (25?°C), although fruit quality was lower than that of the vine-ripened fruit. In addition, detached UG fruits exposed to light accumulated more lycopene and total soluble sugars than those incubated in darkness. When the detached UG fruits were stored at a low temperature (10?°C), the fruit-ripening process was nearly blocked, which displayed a non-ripening phenotype. At a high temperature (35?°C), the detached UG fruit showed a yellow-color on ripening, and fruit qualities such as lycopene and soluble sugars were obviously lower than those stored at 25?°C. Moreover, detaching the UG fruit from the plant evoked a rapid increase in total respiration as well as alternative pathway respiration, but ethylene production was not stimulated during the first 24 h of storage. Importantly, the application of nPG, an inhibitor of alternative pathway respiration, markedly suppressed the wound-induced rise in total respiration and delayed the ripening of detached UG fruit. These findings imply that wound-induced respiration might be a signature for launching the onset of the ripening of detached UG fruit, and the optimal conditions of light and temperature are beneficial for the color change and the ripening processes.  相似文献   

4.
An analysis of the accumulation of water and dry matter in tomato fruit   总被引:24,自引:6,他引:18  
Abstract Previously published data from tomato plants grown in nutrient solutions having one of three electrical conductivities (2, 12 and 17 mS cm?1) were analysed. The rate of water import into the fruit, and the proportion of this conducted by the xylem stream were calculated from the daily rates of transpiration and the net accumulation of water and calcium. The rate of water import decreased as the conductivity of the nutrient solution rose, the maximum daily import rates in the third week after pollination being 3.2, 3.0 and 1.8 g fruit?1 d?1 for fruit grown at 2, 12 and 17 mS cm?1, respectively. During fruit development, the proportion of water imported via the xylem fell from 8–15% to 1–2% at maturity. The principal source of water for tomato fruit growth was phloem sap. Based on the daily rates of net dry matter accumulation, respiration and phloem water import, the calculated dry matter concentration of the phloem sap declined from 7 to 3%, or from 12.5 to 7.8% during fruit development in low or high salinity, respectively. The similar dry matter accumulation of fruit grown at different salinities was due to changes in both volume and concentration of phloem sap. Potassium salts in tomato fruit were calculated lo have contributed –0.29, –0.48 and –0.58 MPa to total fruit osmotic potential in the 2, 12 and 17 mS cm?1 treatments, respectively, which accounted for 38% or 49% of the measured total osmotic potential of the 2 mS cm?1 or 17 mS cm?1 treatments. The contribution of hexoses to total fruit osmotic potential in the young fruit was from about –0.1 to –0.2 MPa at all salinities. The osmotic potential of tomato fruit is regulated more by potassium salts than by hexoses.  相似文献   

5.
The carbon dioxide and ethylene concentrations in tomato fruit ( Lycopersicon esculentum cv. Castelmart) and their stage of ripeness (characteristic external color changes) were periodically measured in fruit attached to and detached from the plant. An external collection apparatus was attached to the surface of individual tomato fruit to permit non-destructive sampling of internal gases. The concentration of carbon dioxide and ethylene in the collection apparatus reached 95% of the concentration in the fruit after 8 h. Gas samples were collected every 24 h. A characteristic climacteric surge in carbon dioxide (2-fold) and ethylene (10-fold) concentration occurred coincident with ripening of detached tomato fruit. Fruit attached to the plant exhibited a climacteric rise in ethylene (20-fold) concentration during ripening, but only a linear increase in carbon dioxide concentration. The carbon dioxide concentration increases in attached fruit during ripening, but the increase is a continuation of the linear increase seen in both attached and detached fruit before ripening and does not exhibit the characteristic pattern normally associated with ripening climacteric fruit. In tomato fruit, it appears that a respiratory climacteric per se, which has been considered intrinsic to the ripening of certain fruit, may not be necessary for the ripening of "climacteric" fruit at all, but instead may be an artifact of using harvested fruit.  相似文献   

6.
番茄果实糖酸类物质的含量及比例直接影响其风味品质,前期研究表明,适宜浓度的外源5-氨基乙酰丙酸(ALA)能够促进果实的成熟并提高其芳香品质。该试验为探究外源ALA对番茄果实发育及其糖酸品质的影响,以番茄‘原味1号’(Solanum lycopersicum cv.Yuanwei No.1)品种为试材,于第4穗果授粉后10 d果实表面喷施0、100和200 mg·L^(-1)的ALA溶液,分析ALA对番茄果实形态、果皮色泽及果实不同部位组织中糖、酸类物质组分及含量的影响。结果表明:(1)外源ALA溶液能显著促进番茄果实横径、纵径的增加,提高果实单果重,还显著降低果实硬度,促进果实软化,提升果实口感,并提高了果实V_(C)和可溶性固形物含量。(2)果实不同部位组织(包括果肉、小柱和隔膜)糖类物质组分含量测定结果显示,外源ALA处理能够显著提高果实可溶性总糖含量(包括果糖、葡萄糖和蔗糖),并有利于糖类物质向果肉中积累。(3)在有机酸类物质中,除酒石酸含量增加外,外源ALA处理均能不同程度地降低果实各部位组织中酸类物质含量,从而显著提高番茄果实果肉部位糖酸比,提升果实糖酸品质。研究发现,在番茄果实发育过程中外源施用200 mg·L^(-1) ALA不仅能够促进果实发育及着色,提高单果重,提升果实的外观品质,还有利于果实糖酸品质的形成。  相似文献   

7.
The study was conducted in order to determine whether water stress affects the accumulation of dry matter in tomato fruits similarly to salinity, and whether the increase in fruit dry matter content is solely a result of the decrease in water content. Although the rate of water transport to tomato fruits decreased throughout the entire season in saline water irrigated plants, accumulation rates of dry matter increased significantly. Phloem water transport contributed 80–85% of the total water transport in the control and water-stressed plants, and over 90% under salinity. The concentration of organic compounds in the phloem sap was increased by 40% by salinity. The rate of ions transported via the xylem was also significantly increased by salinity, but their contribution to fruit osmotic adjustment was less. The rate of fruit transpiration was also markedly reduced by salinity. Water stress also decreased the rate of water transport to the tomato fruit and increased the rate of dry matter accumulation, but much less than salinity. The similar changes, 10–15%, indicate that the rise in dry matter accumulation was a result of the decrease in water transport. Other parameters such as fruit transpiration rates, phloem and xylem sap concentration, relative transport via phloem and xylem, solutes contributing to osmotic adjustment of fruits and leaves, were only slightly affected by water stress. The smaller response of these parameters to water stress as compared to salinity could not be attributed to milder stress intensity, as leaf water potential was found to be more negative. Measuring fruit growth of girdled trusses, in which phloem flow was inactive, and comparing it with ungirdled trusses validated the mechanistic model. The relative transport of girdled as compared to ungirdled fruits resembled the calculated values of xylem transport.  相似文献   

8.
Many crops grow well on neutral or weakly acidic soils. The ability of roots to elongate under high‐external pH would be advantageous for the survival of plants on alkaline soil. We found that root elongation was promoted in some plant species in alkaline‐nutrient solution. Barley, but not tomato, root growth was maintained in pH 8 nutrient solution. Fe and Mn were absorbed well from the pH 8 nutrient solution by both barley and tomato plants, suggesting that the different growth responses of these two species may not be caused by insolubilization of transition metals. The ability of intact barley and tomato plants to acidify external solution was comparable; in both species, this ability decreased in plants exposed to pH 8 nutrient solution for 1 w. Conversely, cell proliferation and elongation in barley root apices were facilitated at pH 8 as shown by microscopy and cell‐cycle‐related gene‐expression data; this was not observed in tomato. We propose that barley adapts to alkaline stress by increasing root development.  相似文献   

9.
In the present study, the hypothesis was tested as to whether silicon supplied via the nutrient solution is capable of enhancing the tolerance of hydroponically grown zucchini squash (Cucurbita pepo L. cv. ‘Rival’) to salinity and powdery mildew infections. Two experiments were conducted involving a low (2.2 dS m?1, 0.8 mM NaCl) and a high salinity level (6.2 dS m?1, 35 mM NaCl) in combination with a low (0.1 mM) and a high (1.0 mM) Si level in the nutrient solution supplied to the crop. The exposure of the plants to high external salinity restricted significantly the vegetative growth as well as the fruit yield of zucchini due to a reduction of both the number of fruits per plant and the mean fruit weight. However, the inclusion of 1 mM of Si in the salinized nutrient solution mitigated the salinity-associated suppression of both growth and yield. Part of the growth and fruit yield suppression at high salinity was due to restriction of net photosynthesis. The stomatal conductance was also restricted by salinity, whereas the substomatal CO2 concentration was not affected by the NaCl or Si treatments. The supply of 1 mM of Si via the nutrient solution mitigated the inhibitory effect of salinity on net photosynthesis and this effect was associated with lower Na and Cl translocation to the epigeous plant tissues. Furthermore, the supply of Si via the nutrient solution suppressed appreciably the expansion of a powdery mildew (Podosphaera xanthii) infection in the leaves at both salinity levels. These results indicate that the supply of at least 1 mM of Si via the nutrient solution is capable of enhancing both tolerance to salinity and resistance to powdery mildew in soilless cultivations of zucchini squash.  相似文献   

10.
1‐Methylcyclopropene (1‐MCP, 1 μl/L) and 1 × minimum fungicidal concentration (MFC) citral alone and in combination were used to treat on postharvest tomato fruits to investigate their influence on disease incidence and postharvest quality during fruit storage, which were stored at 90%–95% relative humidity and 25 ± 2°C. Weight loss, pH, hue angle (Hue°), total soluble solid (TSS), ascorbic acid content, firmness and antioxidant enzyme activities were evaluated after each storage period. 1 μl/L 1‐MCP or 1 × MFC citral reduced weight loss, retarded peel colour changes and retained postharvest fruit quality. 1 μl/L 1‐MCP + 1 × MFC citral could better maintain firmness and ascorbic acid content and increase antioxidant enzyme activities, compared to other treatments. Disease incidence of tomato fruit was significantly decreased, and spore germination and mycelia growth of Botrytis cinerea were suppressed by the combined treatment with 1 μl/L 1‐MCP and 1 × MFC citral. These results indicate that the combined treatment could effectively delay postharvest tomato fruits senescence and inhibit postharvest pathogens in vitro.  相似文献   

11.
P. J. Sharkey  J. S. Pate 《Planta》1976,128(1):63-72
Summary Diurnal changes in the carbohydrates of leaf laminae and fruits and in the bleeding of sugar and amino acids from fruit phloem were followed by successive sampling from a population of Lupinus albus L. plants. Phloem sap was collected for a standard 5 min period from cut distal tips of attached fruits. Daily fluctuations in leaf dry matter resulted largely from changes in starch and sugar. Leaf sugar rose to a maximum in the afternoon, starch to a maximum at, or shortly after, dusk. Leaves lost sugar and starch from dusk to dawn. Phloem bleeding rate varied little over a daily cycle but sucrose levels fluctuated from a noon maximum of 12–13% (w/v) to a dawn minimum of 9–10%. The rhythm of phloem sugar levels matched closely those of fruit and leaf. Phloem amino acid levels fluctuated in phase with that of sucrose: the relative composition of the amino fraction did not vary significantly over the daily cycle. Pulse feeding of source leaves with 14CO2 at different times in the photoperiod allowed study of the pattern of release of labelled photosynthate to the fruit phloem and the build up and depletion of 14C starch in leaves. Plants transferred to continuous darkness showed a rapid decline in output and concentration of phloem sap solutes, and translocated nitrogen to their fruits at only one quarter of the rate of control plants retained in natural daylight. The combined data from the experiments showed that the rate of output of sugar from cut phloem of a fruit was directly related to the current level of sugar in leaves. When leaf sugar levels were low (5–10 mg ml tissue water-1) sugar in phloem was 10–11 times more concentrated than in source leaves, but at high leaf sugar levels (25–30 mg ml-1) this concentration difference was only 3–4 fold.  相似文献   

12.
Collections of xylem exudate of root stumps or detached nodules, and of phloem bleeding sap from stems, petioles, and fruits were made from variously aged plants of Lupinus albus L. relying on nodules for their N supply. Sucrose was the major organic solute of phloem, asparagine, glutamine, serine, aspartic acid, valine, lysine, isoleucine, and leucine, the principal N solutes of both xylem and phloem. Xylem sap exhibited higher relative proportions of asparagine, glutamine and aspartic acid than phloem sap, but lower proportions of other amino acids. Phloem sap of petioles was less concentrated in asparagine and glutamine but richer in sucrose than was phloem sap of stem and fruit, suggesting that sucrose was unloaded from phloem and amides added to phloem as translocate passed through stems to sinks of the plant. Evidence was obtained of loading of histidine, lysine, threonine, serine, leucine and valine onto phloem of stems but the amounts involved were small compared with amides. Analyses of petiole phloem sap from different age groups of leaves indicated ontogenetic changes and effects of position on a shoot on relative rates of export of sucrose and N solutes. Diurnal fluctuations were demonstrated in relative rates of loading of sucrose and N solutes onto phloem of leaves. Daily variations in the ability of stem tissue to load N onto phloem streams were of lesser amplitude than, or out of phase with fluctuations in translocation of N from leaves. Data were related to recent information on C and N transport in the species.  相似文献   

13.
D. H. Drew 《Plant and Soil》1967,27(1):92-102
Summary When young tomato plants were transferred from nutrient solution to mineral-free water, reductions in transpiration, water content of the shoots and stomatal aperture were not accompanied by a reduction in the relative water content or an increase in the suction pressure of the leaves. The relative water content of the leaves was increased and the suction pressure was little affected.Following transfer of the plants to mineral-free water, the mineral content of the shoots and the osmotic pressure of expressed leaf sap were reduced. It was concluded that mineral salts were necessary for maintaining the osmotic pressure of the leaf cell sap and that this was achieved, at least in part, by maintaining the mineral concentration of the sap. The amount of water that could be taken up by leaves and their turgor pressure were related to the osmotic pressure of the sap and calculations of turgor pressure showed that it was less in the leaves of plants with their roots in mineral-free water than in the leaves of plants in nutrient solution.Evidence was obtained that in leaflets detached from plants with their roots in mineral-free water, stomatal closure could occur at a higher water content than in leaflets detached from plants in nutrient solution, indicating a further role of minerals in leaf water relations. It is suggested that this role may be related to the properties of the cell walls.  相似文献   

14.
Sun J  Loboda T  Sung SJ  Black CC 《Plant physiology》1992,98(3):1163-1169
Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers. To check for novel characteristics, the wild tomato fruit sucrose synthase was purified, by (NH4)2SO4 fraction and chromatography with DE-32, Sephadex G-200, and PBA-60, to one major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The following characteristics were obtained: native protein relative molecular weight 380,000; subunit relative molecular weight 89,000; Km values with: sucrose 53 millimolar, UDP 18.9 micromolar, UDP-glucose 88 micromolar, fructose 8.4 millimolar; pH optima between 6.2 to 7.3 for sucrose breakdown and 7 to 9 for synthesis; and temperature optima near 50°C. The enzyme exhibited a high affinity and a preference for uridylates. The enzyme showed more sensitivity to divalent cations in the synthesis of sucrose than in its breakdown. Sink strength in tomato fruits also was investigated in regard to sucrose breakdown enzyme activities versus fruit weight gain. Sucrose synthase activity was consistently related to increases in fruit weight (sink strength) in both wild and commercial tomatoes. Acid and neutral invertases were not, because the published invertase activity values were too variable for quantitative analyses regarding the roles of invertases in tomato fruit development. In rapidly growing fruits of both wild and commercially developed tomato plants, the activity of sucrose synthase per growing fruit, i.e. sucrose synthase peak activity X fruit size, was linearly related to final fruit size; and the activity exceeded fruit growth and carbon import rates by at least 10-fold. In mature, nongrowing fruits, sucrose synthase activities approached nil values. Therefore, sucrose synthase can serve as an indicator of sink strength in growing tomato fruits.  相似文献   

15.
Liao  M. T.  Hedley  M. J.  Woolley  D. J.  Brooks  R. R  Nichols  M. A. 《Plant and Soil》2000,223(1-2):245-254
The effect of rooting media Cu concentration (0.05–20 mg Cu L-1) on amino acid concentrations and copper speciation in the xylem sap of chicory and tomato plants was measured using 6 week old plants grown in a nutrient film technique system (NFT). Irrespective of the Cu concentration in the nutrient solutions, more than 99.68% and 99.74% of total Cu in tomato and chicory xylem sap was in a bound form. When exposed to high Cu concentrations in the rooting media, amino acid concentrations in the sap increased. Relative to other amino acids, the concentrations of glutamine (Gln), histidine (His), asparagine (Asn), valine (Val), nicotianamine (NA) and proline (Pro) in tomato xylem saps, and His, γ-aminobutyric acid (Gaba), glutamic acid (Glu), leucine (Leu), NA and phenylalanine (Phe) in chicory xylem saps showed the greatest increases. The data indicate that induced synthesis of some free amino acids as a specific and proportional response to Cu treatment. For a single complexation amino acid, the solution Cu2+concentration vs pH titration curve for NA at 0.06–0.07 mM was most similar, closely followed by His at 0.5–0.6 mM, to the solution Cu2+concentration behaviour in both tomato and chicory xylem sap. It is concluded that increased Cu concentrations in the rooting media induced selective synthesis of certain amino acid which include NA, His, Asn and Gln which have high stability constants with Cu. NA and His have the highest binding constants for Cu and the concentrations of NA and His in chicory and tomato xylem saps can account for all the bound Cu carried in the sap. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Under two monoxenic culture techniques of growing plants (filter paper and silica sand cultures), sugar in root exudate from Meloidogyne incognita-infected tomato increased 133 to 836% over controls. In contrast, amino acids were moderately reduced 52 to 56%. Chromatographic analysis showed that galled root exudate contained three sugars, twelve amino acids, and three organic acids, whereas healthy root exudate contained four sugars, fifteen amino acids, and four organic acids. Polysaccharide was responsible for the large increase of sugars in galled root exudates. The concn and the absolute amount of total sugars in the infected plant xylem sap were greater than in healthy plant xylem sap up to 6 wk after inoculation, whereas amino acids were moderately lower than in controls throughout the test period. Chromatographic analysis showed that xylem sap from both healthy and infected plants at 4 wk after inoculation contained four sugars and five organic acids. We identified 18 and 17 amino acids in the healthy and infected plant xylem sap, respectively. The concn of sugar increased as the nematode inoculum increased at 2, 4 and 6 wk after inoculation. The amino acids in all samples from the infected plant moderately decreased with an increase of nematode inoculum. We suggest that changes in total sugars and amino acids, of infected plant xylem sap and root exudate are a probable mechanism by which tomato plants are predisposed to Fusarium wilt.  相似文献   

17.
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.  相似文献   

18.
Translocation of Calcium in Relation to Tomato Fruit Growth   总被引:5,自引:1,他引:4  
Regulation of the uptake and distribution of calcium in thetomato plant was investigated in plants grown in recirculatingnutrient solutions at electrical conductivities of 2,7,12 and17 millisiemens (mS). Despite an increased calcium content inthe nutrient solution at high conductivity (7–17 mS),the accumulation of calcium by fruit was progressively reducedby increasing salinity, particularly in the distal half. Theincidence of blossom-end rot in fruit (BER) also increased withsalinity. The uptake of water and 45Ca by plants was substantially reducedin the high salinity treatment (17 mS) and, to a lesser extent,by high relative humidity (90 per cent r.h. at 20 °C). Further,the translocation of 45Ca from roots to shoots was reduced byhigh salinity, while the percentage distribution of 45Ca tothe apex was reduced by high humidity. Only approx. 2 per centof the 45Ca taken up by a plant was imported by the truss. The uptake of 45Ca and its distribution among pedicel, calyxand berry by detached fruit in 24 h showed that fruit from highsalinity plants had a reduced uptake and a lower accumulationof 45 Ca in the berry than in the calyx. In addition, plants grown at high conductivity had a lower rateof xylem sap exudation from decapitated plants. The fruit ofthese plants had a smaller xylem cross-sectional area in thefruit pedicel and a smaller calyx than those of the low conductivitytreatment. Calcium, translocation, tomato, fruit, blossom-end rot  相似文献   

19.
Sucrose unloading and sink activity were examined in tomato plants (Lycopersicon esculentum) overexpression sucrose phosphate synthase (SPS; EC 2.3.1.14). Like the leaves, the fruit of the transformed tomato plants had elevated (2.4-fold) SPS activity. SPS over-expression in tomato fruit did not significantly change acid invertase, and only slightly reduced ADPglc ppase activity, but enhanced sucrose synthase activity by 27%. More importantly, the amount of sucrose unloaded into the fruit was considerably increased. Using [3H]- (fructosyl)-sucrose in in vitro unloading experiments with harvested 20-d-old fruit, 70% more sucrose was unloaded into the transformed fruits compared to the untransformed controls. Furthermore, the turnover of the sucrose unloaded into the fruit of transformed plants was 60% higher than that observed in the untransformed controls. Taken together, these results demonstrate that SPS overexpression increases the sink strength of transformed tomato fruit.  相似文献   

20.
Changes in the galactose content of the noncellulosic polysaccharides of tomato (Mill) fruit cell walls were analyzed under various conditions. On the plant, galactan decreased gradually during fruit growth. As normal fruits ripened, the loss of galactan increased sharply; this was not observed in attached rin fruits beyond the fully mature stage. The ability to produce new wall galactan in vitro was retained in mature fruit tissue but declined with ripening. Normal tomatoes ripening on the plant showed a transient increase in galactan content at the climacteric. It is suggested that the decline in wall galactan is partly due to reduced synthesis in senescing, normal fruits and in detached rin tomatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号