首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetable oil (n = 81) for human consumption from Khartoum State in Sudan were analyzed for aflatoxins (AFs), using high-performance liquid chromatography (HPLC) with fluorescence detection following extraction with methanol:water (80:20) and clean-up using petroleum ether. Sampling included sesame oil (n = 14), peanut oil (n = 21), and sunflower oil (n = 19) purchased from retail shops, and mixed oil produced by two local manufacturers (factory A, n = 15; factory B, n = 12). AF contamination was found in 80/81 (98.8%) samples, with total AF levels ( AFB1 + AFB2 + AFG1 + AFG2 ) \left( {{\hbox{AF}}{{\hbox{B}}_{\rm{1}}} + {\hbox{AF}}{{\hbox{B}}_{\rm{2}}} + {\hbox{AF}}{{\hbox{G}}_{\rm{1}}} + {\hbox{AF}}{{\hbox{G}}_{\rm{2}}}} \right) of 0.43–339.9 μg/kg and mean level of 57.5 μg/kg. All sesame oils had total AF levels that were much higher than the United States Food and Drug Administration acceptable limit of 20 μg/kg. The percentage of samples with total AF values <20 μg/kg in other oils varied and was 57.14% in peanut oil, 36.8% in sunflower oil, 66.7% (mixed oil from factory A), and 91.7% (mixed oil from factory B). In conclusion, the levels of total AFs in edible oil as available in Khartoum State are quite alarming. To reduce the health hazards for the consumers, an intervention strategy to manage AFs in food commodities from Sudan is urgently required.  相似文献   

2.
Molecular dynamics simulations of the biphalin molecule, (Tyr-D-Ala-Gly-Phe-NH)2, and the active tetrapeptide hydrazide, Tyr-D-Ala-Gly-Phe-NH-NH2 were performed to investigate the cause of the increased μ and δ receptor binding affinities of the former over the latter. The simulation results demonstrate that the acylation of the two equal tetrapeptide fragments of biphalin produces the constrained hydrazide bridges C4a - C4¢- N9 - N10 {\hbox{C}}_4^{\alpha } - {{\hbox{C}}_4}\prime - {{\hbox{N}}_9} - {{\hbox{N}}_{{10}}} and N9 - N10 - C5¢- C5a {{\hbox{N}}_9} - {{\hbox{N}}_{{10}}} - {{\hbox{C}}_5}\prime - {\hbox{C}}_5^{\alpha } , which in turn increase the opportunity of conformations for binding to μ or δ receptors. Meanwhile, the connection of the two active tetrapeptide fragments of biphalin also results in the constrained side chain torsion angle χ2 at one of the two residues Phe. This constrained side chain torsion angle not only significantly increases the δ receptor binding affinity but also makes most of the δ receptor binding conformations of biphalin bind to the δ receptor through the fragment containing the mentioned residue Phe.  相似文献   

3.
Drug uptake by polymer was modeled using a molecular dynamics (MD) simulation technique. Three drugs—doxorubicin (water soluble), silymarin (sparingly water soluble) and gliclazide (water insoluble)—and six polymers with varied functional groups—alginic acid, sodium alginate, chitosan, Gantrez AN119 (methyl-vinyl–ether-co-malic acid based), Eudragit L100 and Eudragit RSPO (both acrylic acid based)—were selected for the study. The structures were modeled and minimized using molecular mechanics force field (MM+). MD simulation (Gromacs-forcefield, 300 ps, 300 K) of the drug in the vicinity of the polymer molecule in the presence of water molecules was performed, and the interaction energy (IE) between them was calculated. This energy was evaluated with respect to electric-dipole, van der Waals and hydrogen bond forces. A good linear correlation was observed between IE and our own previous data on drug uptake* [R 2 = 0.65, Radj2 = 0.65,Rpre2 = 0.56, {\hbox{R}}_{\rm{adj}}^2 = 0.65,{\hbox{R}}_{\rm{pre}}^2 = 0.56, and a F ratio of 30.25, P < 0.001; Devarajan et al. (2005) J Biomed Nanotechnol 1:1–9]. Maximum drug uptake by the polymeric nanoparticles (NP) was achieved in water as the solvent environment. Hydrophilic interaction between NP and water was inversely correlated with drug uptake. The MD simulation method provides a reasonable approximation of drug uptake that will be useful in developing polymer-based drug delivery systems.  相似文献   

4.
5.
Life history parameters associated with reproductive biology, age, and growth of the convict cichlid (also known as the zebra cichlid) Amatitlania nigrofasciata, which was introduced into the Haebaru Reservoir on Okinawa-jima Island, were estimated using 437 specimens that ranged from 13.7 to 82.9 mm standard length (SL). Lengths of females at first maturity (SL) and 50% maturity (L 50) were estimated to be 32.2 and 37.3 mm SL, respectively. The spawning period continued throughout the year, with a peak spawning cycle from March to May 2006–2007. Observations of postovulatory follicles and tertiary yolk stage oocytes indicate that convict cichlids spawn multiple times within a year. Female cichlids that hatched during the peak spawning seasons matured after October of the same year. Batch fecundity of females (32.2–61.2 mm SL) ranged from 65 to 345 (mean ± SD = 155 ± 63). Opaque zones along the outer margins of otoliths formed annually. The maximum age of male and female cichlids was 3 years. The von Bertalanffy growth formulae (VBGF) were expressed as Lt = 57.4( 1 - e - 0.78( t + 0.91 ) ) {{\hbox{L}}_{\rm{t}}}{ = 57}{.4}\left( {1 - {e^{ - 0.78\left( {t + 0.91} \right)}}} \right) for females and Lt = 69.5( 1 - e - 1.07( t + 0.24 ) ) {{\hbox{L}}_{\rm{t}}}{ = 69}{.5}\left( {1 - {e^{ - 1.07\left( {t + 0.24} \right)}}} \right) for males. Males grew larger than females beginning from the first year. Certain life history characteristics, such as year-round spawning and early maturation, probably contributed to the successful establishment of the convict cichlid, and this species in particular is thought to adapt and become established quickly upon introduction to freshwater systems on Okinawa-jima Island.  相似文献   

6.
As interleukin-6 (IL-6), its soluble receptor (sIL-6R), and the IL-6/sIL-6R complex is transiently elevated in response to prolonged moderate-intensity exercise, this study investigated how these levels would be modulated by an acute bout of high-intensity intermittent (HIIT) exercise in comparison to continuous moderate-intensity exercise (MOD). This study also investigated the expression of the differentially spliced sIL-6R (DS-sIL-6R) in response to exercise. Eleven healthy males completed two exercise trials matched for external work done (582 ± 82 kJ). During MOD, participants cycled at 61.8 (2.6)% VO2peak for 58.7 (1.9) min, while HIIT consisted of ten 4-min intervals cycling at 87.5 (3.4)% [(V)\dot]O2peak \dot{V}{{\hbox{O}}_{2{\rm{peak}}}} separated by 2-min rest. Blood samples were collected pre-exercise, post-exercise, and 1.5, 6, and 23 h post-exercise. Plasma IL-6, sIL-6R, IL-6/sIL-6R complex, and DS-sIL-6R levels were measured by enzyme-linked immunosorbent assay. HIIT caused a significantly greater increase in IL-6 than MOD (P = 0.018). Both MOD and HIIT resulted in an increase in sIL-6R and IL-6/sIL-6R complex (P < 0.001), however, this was not significantly different between trials. Soluble IL-6R peaked at 6 h post-exercise in both trials. DS-sIL-6R increased significantly with exercise (P = 0.02), representing 0.49% of the total sIL-6R increase. This investigation has demonstrated that the IL-6 response is greater after intermittent high-intensity exercise than comparable moderate-intensity exercise; however, increased IL-6/sIL-6R complex nor sIL-6R was different between HIIT and MOD. The current study has shown for the first time that elevated sIL-6R after HIIT exercise is derived from both proteolytic cleavage and differential splicing.  相似文献   

7.
The unusual ??-halogen bond interactions are investigated between $ \left( {\hbox{BNN}} \right)_3^{+} $ and X1X2 (X1, X2?=?F, Cl, Br) employing MP2 at 6-311?+?G(2d) and aug-cc-pVDZ levels according to the ??CP (counterpoise) corrected potential energy surface (PES)?? method. The order of the ??-halogen bond interactions and stabilities of the complexes are obtained to be $ \left( {\hbox{BNN}} \right)_3^{+} \ldots {{\hbox{F}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{ClF < }}\left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{C}}{{\hbox{l}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrCl}}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{B}}{{\hbox{r}}_2}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrF}}{.} $ at MP2/aug-cc-pVDZ level. The analyses of the Mulliken charge transfer, natural bond orbital (NBO), atoms in molecules (AIM) theory and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of $ \left( {\hbox{BNN}} \right)_3^{+} $ to X1X2. This result suggests that the positive aromatic ring $ \left( {\hbox{BNN}} \right)_3^{+} $ might act as a ??-electron donor to form the ??-halogen bond.
Figure
Shifts of electron density as a result of formation of the complex. The unusual ??-halogen interactions are found between (BNN)3 + and X1X2 (X1, X2=F, Cl, Br) employing MP2 method at 6-311+G(2d) and aug-cc-pVDZ levels according to the ??CP-corrected PES)?? method. The analyses of the Mulliken charge transfer, NBO, AIM and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of (BNN)3 + to X1X2. (BNN)3 + might be as ??-electron donor to form the ??-halogen bond.  相似文献   

8.
9.
In summer and winter, young, sedentary male (N = 5) and female (N = 7) subjects were exposed to heat in a climate chamber in which ambient temperature (Ta) was raised continuously from 30 to 42°C at a rate of 0.1°C min−1 at a relative humidity of 40%. Sweat rates (SR) were measured continuously on forearm, chest and forehead together with tympanic temperature (Tty), mean skin temperature ( [`T] s ) \left( {\overline {\hbox{T}} {\hbox{s}}} \right) and mean body temperature ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) . The rate of sweat expulsions (Fsw) was obtained as an indicator of central sudomotor activity. Tty and ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) were significantly lower during summer compared with winter in males; SR was not significantly different between summer and winter in males, but was significantly higher during summer in females; SR during winter was higher in males compared with females. The regression line relating Fsw to ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) shifted significantly from winter to summer in males and females, but the magnitude of the shift was not significantly different between the two subject groups. The regression line relating SR to Fsw was steepened significantly from winter to summer in males and females, and the change in the slope was significantly greater in females than in males. Females showed a lower slope in winter and a similar slope in summer compared to males. It was concluded that sweating function was improved during summer mediated by central sudomotor and sweat gland mechanisms in males and females, and, although the change of sweat gland function from winter to summer was greater in females as compared with males, the level of increased sweat gland function during summer was similar between the two subject groups.  相似文献   

10.
We measured the self-diffusion coefficients of water in a Nafion membrane and two sulfonated polyethersulfone (SPES) membranes with varying ion-exchange capacities (IEC) in terms of relative humidity using the pulse field gradient NMR (PFG-NMR) technique. The self-diffusion coefficients were plotted against the number of water molecules per sulfonic acid group, λ, and compare these values with the results of molecular dynamics (MD) simulations. Classical MD simulations for all membranes were carried out using a consistent force field at λ = 3, 6, 9, 12, and 15. The dynamic properties of water (H2O) and hydronium (H3O+) on a molecular level were estimated as self-diffusion coefficients and residence times around a sulfonate group ( \textSO3- {\text{SO}}_3^{-} ). The diffusion coefficients of H2O and H3O+ followed the order, Nafion > SPES with IEC = 1.4 > SPES with IEC = 1.0 > SPES with IEC = 0.75, which agreed with the experimental data. The residence time distribution of H2O around \textSO3- {\text{SO}}_3^{-} in Nafion was in the range of 1–6 ps, whereas H2O in the SPES exhibited a residence time of greater than 20 ps.  相似文献   

11.
The purpose of the present work is robust calculation of effective atomic numbers ($${Z}_{\text{eff}}$$s) for photon, electron, proton, alpha particle and carbon ion interactions through the newly developed software, Phy-X/ZeXTRa (Zeff of materials for X-Type Radiation attenuation). A pool of total mass attenuation and energy absorption coefficients (for photons) and total mass stopping powers (for charged particles) for elements was constructed first. Then, a matrix of interaction cross sections for elements Z = 1–92 was constructed. Finally, effective atomic numbers were calculated for any material by interpolating adjacent cross sections through a linear logarithmic interpolation formula. The results for $${Z}_{\text{eff}}$$ for photon interaction were compared with those calculated through Mayneord’s formula, which suggests a single-valued $${Z}_{\text{eff}}$$ for any material for low-energy photons for which photoelectric absorption is the dominant interaction process. The single-valued $${Z}_{\text{eff}}$$ was found to agree well with that obtained by other methods, in the low-energy region. In addition, $${Z}_{\text{eff}}$$ values of various materials of biological interest were compared with those obtained experimentally at 59.54 keV. In general, the agreement between values calculated with Phy-X/ZeXTRa and Auto-Zeff and those measured were satisfactory. A comparison of $${Z}_{\text{eff}}$$ values for photon energy absorption calculated with Phy-X/ZeXTRa and literature values for a nucleotide base, adenine, was made, and the relative difference (RD) in $${Z}_{\text{eff}}$$ between Phy-X/ZeXTRa and literature values was found to be 2% < RD < 11%, at low photon energies (1–100 keV), while it was less than 1% at energies higher than 100 keV. Highest $${Z}_{\text{eff}}$$ values were observed at low photon energies, where photoelectric absorption dominates photon interaction. For electrons, corresponding RD(%) values in $${Z}_{\text{eff}}$$ were found to be in the range 0.4 ≤ RD(%) ≤ 1.7, while for heavy charged particle interactions it was 2.4 ≤ RD(%) ≤ 4.2 for total proton interaction and 0 ≤ RD(%) ≤ 8 for total alpha particle interaction. In view of the importance of $${Z}_{\text{eff}}$$ for identifying and differentiating tissues in diagnostic imaging as well as for estimating accurate dose in radiotherapy and particle-beam therapy, Phy-X/ZeXTRa could be used for fast and accurate calculation of $${Z}_{\text{eff}}$$ in a wide energy range for both photon and charged particle (electrons, protons, alpha particles and C ions) interactions.  相似文献   

12.
13.
Others have shown that exposing oocytes to high levels of (10–20 mM) causes a paradoxical fall in intracellular pH (pHi), whereas low levels (e.g., 0.5 mM) cause little pHi change. Here we monitored pHi and extracellular surface pH (pHS) while exposing oocytes to 5 or 0.5 mM NH3/NH4 +. We confirm that 5 mM causes a paradoxical pHi fall (−ΔpHi ≅ 0.2), but also observe an abrupt pHS fall (−ΔpHS ≅ 0.2)—indicative of NH3 influx—followed by a slow decay. Reducing [NH3/NH4 +] to 0.5 mM minimizes pHi changes but maintains pHS changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates −ΔpHS at both levels. During removal of 0.5 or 5 mM NH3/NH4 +, failure of pHS to markedly overshoot bulk extracellular pH implies little NH3 efflux and, thus, little free cytosolic NH3/NH4 +. A new analysis of the effects of NH3 vs. NH4 + fluxes on pHS and pHi indicates that (a) NH3 rather than NH4 + fluxes dominate pHi and pHS changes and (b) oocytes dispose of most incoming NH3. NMR studies of oocytes exposed to 15N-labeled show no significant formation of glutamine but substantial accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pHi and pHS demonstrate that NH3 flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane—AmtB—enhances the flux of a gas across a biological membrane.
Walter F. Boron (Corresponding author)Email:
  相似文献   

14.
The data processing method of the turbidimetric bioassay of nisin was modified to facilitate its industrial application. The influence of the initial indicator concentration was minimized by a redefined specific dose of the bacteriocin as the quotient between the titer of the added bacteriocin and the initial population density of the indicator in the suspension. It was found that d c = 0.125 μg ml−1 was the critical dose of nisin that can cause a complete inhibition of the indicator, Pediococcus acidilactici UL5, with an initial OD of 0.135. To eliminate the interference of the cell debris, an equation, , exploiting d c, was formulated to obtain the intrinsic survival proportion. The use of the specific dose of the bacteriocin and the intrinsic survival proportion as parameters of the dose/response curve greatly enhanced its repeatability and feasibility. A dual-dosage approach was developed to further simplify the conventional standard dose/response curve method.  相似文献   

15.
The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5–90 g m−3. The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ m = 0.1188 h−1, K S = 5.984 mg l−1, and K i = 156.6 mg l−1. The yield coefficient mean value Y\textxs\textapp Y_{\text{xs}}^{\text{app}} for the batch culture was 0.72 gdry cells weight (gsubstrate)−1. The experiments conducted in a chemostat at various dilution rates (D = 0.035–0.1 h−1) made it possible to determine the value of the coefficient for maintenance metabolism m d = 0.0165 h−1 and the maximum yield coefficient value Y\textxs\textM = 0.913 Y_{\text{xs}}^{\text{M}} = 0.913 . Chemostat experiments confirmed the high value of yield coefficient Y\textxs\textapp Y_{\text{xs}}^{\text{app}} observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.  相似文献   

16.
Specific respiration rate ( ) is a key parameter to understand cell metabolism and physiological state, providing useful information for process supervision and control. In this work, we cultivated different insect cells in a very controlled environment, being able to measure . Spodoptera frugiperda (Sf9) cells have been used through virus infection as host for foreign protein expression and bioinsecticide production. Transfected Drosophila melanogaster (S2) cells can be used to produce different proteins. The objective of this work is to investigate respiratory activity and oxygen transfer during the growth of different insect cells lines as Spodoptera frugiperda (Sf9), Drosophila melanogaster (S2) wild and transfected for the expression of GPV and EGFP. All experiments were performed in a well-controlled 1-L bioreactor, with SF900II serum free medium. Spodoptera frugiperda (Sf9) cells reached 10.7 × 106 cells/mL and maximum specific respiration rate () of 7.3 × 10−17 molO2/cell s. Drosophila melanogaster (S2) cells achieved 51.2 × 106 cells/mL and of 3.1 × 10–18 molO2/cell s. S2AcGPV (expressing with rabies virus glycoprotein) reached 24.9 × 106 cells/mL and of 1.7 × 10–17 molO2/cell s, while S2MtEGFP (expressing green fluorescent protein) achieved 15.5 × 106 cells/mL and  = 1.9 × 10−17 molO2/cell s. Relating to the Sf9, S2 cells reached higher maximum cell concentrations and lower specific respiration rate, which can be explained by its smaller size. These results presented useful information for scale-up and process control of insect cells.  相似文献   

17.
In the present study, we test the hypothesis that AMP-activated protein kinase (AMPK) initiates metabolic rate suppression in isolated goldfish hepatocytes. To accomplish this, we attempted to pharmacologically activate AMPK in goldfish hepatocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and the thienopyridone, A769662, to examine the effects of AMPK activation on eukaryotic elongation factor-2 (eEF2), protein synthesis, and cellular oxygen consumption rate ( [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} ). Goldfish hepatocytes treated with 1 mM AICAR under normoxic conditions (>200 μM O2) showed a modest but significant 1.1-fold increase in AMPK phosphorylation, a 7.5-fold increase in AMPK activity, a 1.4-fold increase in eEF2 phosphorylation, and a 24% decrease in [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} . At physiologically relevant [O2] (<40 μM O2), the addition of 1 mM AICAR resulted in only a 13% decrease in cellular [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} with no change in sensitivity to [O2] as assessed by estimates of cellular P50 and P90 values. The addition of compound C, a general protein kinase inhibitor, after AICAR incubation did not reverse the effects of AICAR on [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} in normoxia. Treatment of hepatocytes with ≤200 μM A769662 did not affect AMPK activity, AMPK phosphorylation, eEF2 phosphorylation, or cellular [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} . These data suggest that A769662 is not an activator of AMPK in goldfish hepatocytes. Although our study provides support for the hypothesis that AMPK plays a role in initiating metabolic rate suppression in goldfish hepatocytes, this support must be viewed cautiously because of the known off-target effects of the pharmacological agents used.  相似文献   

18.
The phase separation behavior of whey protein isolate (WPI) aggregates and κ-carrageenan (κ-car) mixtures was studied using the Vrij's theory and image analysis method. The intrinsic parameter (molecular mass and radius of gyration) for κ-car and the WPI aggregates was determined using intrinsic viscosity and reduced viscosity of each biopolymer. Confocal microscopy observations revealed the appearance of protein aggregate domains when phase separation occurred, with microgel droplets of WPI included in a continuous κ-car phase. The occurrence of aggregate droplet has not been reported before for the phase-separating WPI/κ-car mixtures. So far, network emulsion-like microstructures have been observed with WPI in a network structure. By using different WPI concentrations (4% or 6%), the microstructure of the systems changes while increasing the κ-car concentration. The size of the microgels (1–2.5 μm) depends on both κ-car and WPI concentration. Confocal microscopy combined with image analysis (method of the variance) was used effectively as objective means to determine the phase boundary of the phase-separating systems. Additional information on the depletion layer thickness, Δ, was obtained using self-consistent field theory. The results show that Δ has a constant value of 80.5 nm for ck - car \prec 2 g/l {{\hbox{c}}_{\kappa {\rm{ - car}}}} \prec {\hbox{2 g}}/{l} , in agreement with ∆ ≈ R g (radius of gyration). Above this concentration, Δ decreases as a function of κ-car concentration. The experimental phase boundary was well predicted using Vrij's theory. This work showed a new approach to generate phase diagrams (e.g., under shear) of phase-separating systems.  相似文献   

19.
Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT) undergoes an autocatalytic process to generate 44.9 and 21.7 kDa subunits; however, a mutant protein (T399A) loses completely the processing ability and mainly exists as a precursor. For a comprehensive understanding of their structural features, the biophysical properties of these two proteins were investigated by circular dichroism and fluorescence spectroscopy. Tryptophan fluorescence and circular dichroism spectra were nearly identical for BlGGT and T399A, but unfolding analyses revealed that these two proteins had a different sensitivity towards temperature- and guanidine hydrochloride (GdnHCl)-induced denaturation. BlGGT and the unprocessed T399A displayed T m values of 61.4°C and 68.1°C, respectively, and thermal unfolding of both proteins was found to be highly irreversible. Fluorescence quenching analysis showed that T399A had a dynamic quenching constant similar to that of the wild-type enzyme. BlGGT started to unfold beyond ∼2.14 M GdnHCl and reached an unfolded intermediate, [GdnHCl]0.5, N − U, at 2.85 M, corresponding to free energy change ( DGH2O )\left( {{\Delta }G_{\rm{H}_{2}{O}} } \right) of 12.34 kcal mol − 1, whereas the midpoint of the denaturation curve for T399A was approximately 3.94 M, corresponding to a DGH2O\Delta G_{\rm{H}_{2}{O}} of 4.45 kcal mol − 1. Taken together, it can be concluded that the structural stability of BlGGT is superior to that of T399A.  相似文献   

20.
The post-prandial rates of ammonia excretion (TAN) and oxygen consumption in the southern catfish (Silurus meridionalis) were assessed at 2 h intervals post-feeding until the rates returned to those of the fasting rates, at 17.5, 22.5, 27.5, and 32.5°C, respectively. Both fasting TAN and increased with temperature, and were lower than those previously reported for many fish species. The relationship between fasting TAN (mmol NH3–N kg−1 h−1) and temperature (T, °C) was described as: fasting TAN = 0.144e 0.0266T (= 0.526, = 27, < 0.05). The magnitude of ammonia excretion and its ratio to total N intake during the specific dynamic action (SDA) tended to increase initially, and then decrease with increasing temperature. The ammonia quotient (AQ), calculated as mol NH3–N/mol O2, following feeding decreased as temperature increased. The relationship between AQ during SDA and temperature was described as: AQduring SDA = 0.303e −0.0143T (= 0.739, = 21, < 0.05). Our results suggest that ammonia excretion and oxygen consumption post-feeding are operating independently of each other. Furthermore, it appears that the importance of protein as a metabolic substrate in postprandial fish decreases with temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号