首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Structural studies assessed interactions between the amino-terminal peptide (FP-I; 23 residues 519-541) of the glycoprotein 41,000 (gp41) of Human Immunodeficiency Virus Type-1 (HIV-1) and human erythrocyte membranes and simulated membrane environments. Peptide binding was examined at sub-hemolytic (approx. less than 5 microM) and hemolytic (greater than or equal to 5 microM) doses (Mobley et al. (1992) Biochem. Biophys. Acta 1139, 251-256), using circular dichroism (CD) and Fourier-transform infrared (FTIR) measurements with FP-I, and electron spin resonance (ESR) studies employing FP-I spin-labeled at either the amino-terminal alanine (FP-II; residue 519) or methionine (FP-III; position 537). In the sub-lytic regime, FP-I binds to both erythrocyte lipids and dispersions of SDS with high alpha-helicity. Further, ESR spectra of FP-II labeled erythrocyte ghosts indicated peptide binding to both lipid and protein. In ghost lipids, FP-II was monomeric and exhibited low polarity and rapid, anisotropic motion about its long molecular axis (i.e., alpha-helical axis), with restricted motion away from this axis. The spin-label at the amino-terminal residue (Ala-519) is insensitive to the aqueous broadening agent chromium oxalate and buried within the hydrophobic core of the membrane; the angle that the alpha-helix (residues 519-536) makes to the normal of the bilayer plane is either 0 degree or 40 degrees. Contrarily, ESR spectra of ghost lipids labeled with sub-lytic doses of FP-III indicated high mobility and polarity for the reporter group (Met-537) at the aqueous-membrane interface, as well as extreme sensitivity to chromium oxalate. At lytic FP-I doses, CD and FTIR showed both alpha-helix and beta-structure for peptide in ghost lipids or detergent, while ESR spectra of high-loaded FP-II in ghost membranes indicated peptide aggregates. Membrane aggregates of FP-I may be involved in hemolysis, and models are suggested for N-terminal gp41 peptide participation in HIV-induced fusion and cytolysis.  相似文献   

2.
Structural and functional studies assessed the membrane actions of the N terminus of HIV-1 glycoprotein 41000 (gp41). Earlier site-directed mutagenesis has shown that key amino acid changes in this gp41 domain inhibit viral infection and syncytia formation. Here, a synthetic peptide corresponding to the N terminus of gp41 (FP; 23 residues, 519-541), and also FP analogs (FP520V/E with Val-->Glu at residue 520; FP527L/R with Leu-->Arg at 527; FP529F/Y with Phe-->Tyr at 529; and FPCLP1 with FP truncated at 525) incorporating these modifications were prepared. When added to human erythrocytes at physiologic pH, the lytic and aggregating activities of the FP analogs were much reduced over those with the wild-type FP. With resealed human erythrocyte ghosts, the lipid-mixing activities of the FP analogs were also substantially depressed over that with the wild-type FP. Combined with results from earlier studies, theoretical calculations using hydrophobic moment plot analysis and physical experiments using circular dichroism and Fourier transform infrared spectroscopy indicate that the diminished lysis and fusion noted for FP analogs may be due to altered peptide-membrane lipid interactions. These data confirm that the N-terminal gp41 domain plays critical roles in the cytolysis and fusion underlying HIV-cell infection.  相似文献   

3.
The envelope proteins, gp 120 and gp41 of HIV-1, play a crucial role in receptor (CD4+ lymphocytes) binding and membrane fusion. The fragment 254-274 of gp120 is conserved in all strains of HIV and, as a part of the full gp120 protein, behaves as 'immunosilent', but as an individual fragment it is 'immunoreactive'. When this fragment binds to its receptor, it activates the fusion domain of gp41 allowing viral entry into the host CD4+ cells. The conformation of fragment 254-274 of the gp120 domain and fragment 519-541 of the gp41 domain was studied by NMR and MD simulations. The studies were carried out in three varied media--water, DMSO-d6 and hexafluoroacetone (HFA). The fusogenic nature of the gp41 domain peptide was investigated by 31P NMR experiments with model bilayers prepared from dimyristoyl-L-alpha-phosphatidylcholine (DMPC). The solvent was seen to exert a major effect on the structure of the two peptides. Fragment (254-274) of gp120 in DMSO-d6 had a type I beta-turn around the tetrad Val9-Ser10-Thr11-Gln12 while in HFA a helical structure spanning the region Ile5 to Gln12 was seen with the remaining part of the peptide in a random coil structure. It is possible that the beta-turn may constitute an initiation site for the formation of the helix. In water at pH 4.5, the peptide adopted a beta-sheet. The NMR results for fragment 519-541 of gp41 are conclusive of a beta-sheet structure in DMSO-d6, a conformation which may help in insertion into the membrane, a notion also put forward by others. The 31P NMR studies of DMPC vesicles with this fragment show its fusogenic nature, promoting fusion of unilamellar vesicles to larger agglomerates like multilamellar ones.  相似文献   

4.
Experiments have shown that the ability of the HIV-1 virus to infect cells can be greatly diminished by deactivation of the N-terminal (fusion) peptide of its glycoprotein gp41. Deactivation can be achieved by the deletion of several amino acid residues, or replacement of a hydrophobic residue with a polar residue, to form mutant variants of the wild-type peptide. We report Monte Carlo simulation studies of a simplified peptide/membrane model, representing the interaction of an HIV-1 fusion peptide (FP) and four closely related mutagens with a lipid bilayer. In agreement with experimental results, we show that FP inserts deeply into the bilayer at approximately 40 degrees to the bilayer normal. We also show a previously unreported behavior of membrane peptides, namely their equilibrium partitioning between several distinct conformations within the bilayer. We quantify this partitioning behavior and characterize each conformation in terms of its geometry, energy, and entropy. The diminished ability of FP mutagens to hemolyse and aggregate red blood cells due to their partitioning into unfavorable conformations, is also discussed. Our analysis supports a negative curvature mechanism for red blood cell hemolysis by FP. We also suggest that the small repulsive forces between surface-adsorbed peptides in opposing membrane surfaces may block aggregation.  相似文献   

5.
The env gene of SIV and HIV-1 encodes a single glycoprotein gp 160, which is processed to give a noncovalent complex of the soluble glycoprotein gp120 and the transmembrane glycoprotein gp41. The extracellular region (ectodomain), minus the N-terminal fusion peptide, of gp41 from HIV-1 (residues 27-154) and SIV (residues 27-149) have been expressed in Escherichia coli. These insoluble proteins were solubilized and subjected to a simple purification and folding scheme, which results in high yields of soluble protein. Purified proteins have a trimeric subunit composition and high alpha-helical content, consistent with the predicted coil-coil structure. SIV gp41 containing a double cysteine mutation was crystallized. The crystals are suitable for X-ray structure determination and, preliminary analysis, together with additional biochemical evidence, indicates that the gp41 trimer is arranged as a parallel bundle with threefold symmetry.  相似文献   

6.
The gp41 subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein mediates the fusion of viral and host cell membranes. As the HIV-1 enters the host cells, the 2 helical regions, HR1 and HR2, in the ectodomain of gp41 can form a 6-helix bundle, which brings the viral and target cell membranes to close proximity and serves as an attractive target for developing HIV-1 fusion inhibitors. Now, there are several cell- and molecule-based assays to identify potential HIV-1 fusion inhibitors targeting gp41. However, these assays cannot be used universally because they are time-consuming, inconvenient, and expensive. In the present study, the authors expressed and purified GST-HR121 and C43-30a proteins that were derived from the HIV-1 gp41 ectodomain region. GST-HR121 has a function similar to the HR1 peptide of gp41, whereas C43-30a is an HR2-derived peptide that added 50 amino acid residues (aa) in the N-terminal of C43. Further research found they could interact with each other, and a potential HIV-1 fusion inhibitor could inhibit this interaction. On the basis of this fact, a novel, rapid, and economic enzyme-linked immunosorbent assay was established, which can be developed for high-throughput screening of HIV-1 fusion inhibitors.  相似文献   

7.
Biron Z  Khare S  Quadt SR  Hayek Y  Naider F  Anglister J 《Biochemistry》2005,44(41):13602-13611
The HIV-1 envelope glycoprotein gp41 is responsible for viral fusion with the host cell. The fusion process, as well as the full structure of gp41, is not completely understood. One of the strongest inhibitors of HIV-1 fusion is a 36-residue peptide named T-20, gp41(638-673) (Fuzeon, also called Enfuvirtide or DP-178; residues are numbered according to the HXB2 gp160 variant) now used as an anti HIV-1 drug. This peptide also contains the immunogenic sequences that represent the full or partial recognition epitope for the broadly neutralizing human monoclonal antibodies 2F5 and 4E10, respectively. Due to its hydrophobicity, T-20 tends to aggregate at high concentrations in water, and therefore the structure of this molecule in aqueous solution has not been previously determined. We expressed a uniformly 13C/15N-labeled 42-residue peptide NN-T-20-NITN (gp41(636-677)) and used heteronuclear 2D and 3D NMR methods to determine its structure. Due to the additional gp41-native hydrophilic residues, NN-T-20-NITN dissolved in water, enabling for the first time determination of its secondary structure at near physiological conditions. Our results show that the NN-T-20-NITN peptide is composed of a mostly unstructured N-terminal region and a helical region beginning at the center of T-20 and extending toward the C-terminus. The helical region is found under various conditions and has been observed also in a 13-residue peptide gp41(659-671). We suggest that this helical conformation is maintained in most of the different tertiary structures of the gp41 envelope protein that form during the process of viral fusion. Accordingly, an important element of the immunogenicity of gp41 and the inhibitory properties of Fuzeon may be the propensity of specific sequences in these polypeptides to assume helical structures.  相似文献   

8.
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.  相似文献   

9.
HIV-1 envelope glycoprotein transmembrane subunit gp41 play a critical role in the fusion of viral and target cell membranes. The gp41 C-terminal heptad repeat region interacts with the N-terminal coiled-coil region to form a six-stranded core structure. Peptides derived from gp41 C-terminal heptad repeat region (C-peptides) are potent HIV-1 entry inhibitors by binding to gp41 N-terminal coiled-coil region. Most recently, we have identified two small organic compounds that inhibit HIV-1-mediated membrane fusion by blocking the formation of gp41 core. These two active compounds contain both hydrophobic and acidic groups while the inactive compounds only have hydrophobic groups. Analysis by computer modeling indicate that the acidic groups in the active compounds can form salt bridge with Lys 574 in the N-terminal coiled-coil region of gp41. Asp 632 in a C-peptide can also form a salt bridge with Lys 574. Replacement of Asp 632 with positively charged residues or hydrophobic residues resulted in significant decrease of HIV-1 inhibitory activity. These results suggest that a salt bridge between an N-terminal coiled coil of the gp41 and an antiviral agent targeted to the gp41 core is important for anti-HIV-1 activity.  相似文献   

10.
We have previously shown that a synthetic peptide containing env residues 581-597 from HIV-1 inhibits lymphoproliferation of human PBMC. We have investigated the molecular mechanism(s) by which this HIV-1-derived peptide inhibits CD3-mediated signal transduction. We show that the peptide containing residues 581-597 from the HIV-1 transmembrane protein gp41 specifically inhibited the intracellular Ca2+ influx in Jurkat cells stimulated by the mAb OKT3 whereas it had no effect on the production of inositol triphosphate. In addition, the peptide inhibited protein kinase C (pkC)-mediated phosphorylation of the CD3 gamma-chain in intact cells and directly inhibited partially purified pkC. The inhibition was noncompetitive with respect to the substrates histone and ATP and independent of the regulatory domain of the enzyme. Furthermore, the peptide required internalization for inhibitory activity because no inhibition of lymphoproliferation was observed when cells were treated with peptide at 4 degrees C. Based on these results obtained with the peptide aa581-597, we postulate that the transmembrane protein gp41 of HIV-1 may inhibit pkC activity and thus block pkC-dependent immune function contributing to the immunosuppression of HIV-1-infected individuals.  相似文献   

11.
The human immunodeficiency virus, type 1 (HIV-1) gp41 core plays an important role in fusion between viral and target cell membranes. A single chain polypeptide, N36(L8)C34, which forms a six-helix bundle in physiological solution, can be used as a model of gp41 core. Here we identified from a 12-mer phage peptide library a positive phage clone displaying a peptide sequence with high binding activity to the HIV-1 gp41 core. The peptide sequence contains a putative gp41-binding motif, PhiXXXXPhiXPhi (X is any amino acid residue, and Phi is any one of the aromatic amino acid residues Trp, Phe, or Tyr). This motif also exists in the scaffolding domain of caveolin-1 (Cav-1), a known gp41-binding protein. Cav-1-(61-101) and Cav-1-(82-101), two recombinant fusion proteins containing the Cav-1 scaffolding domain, bound significantly to the gp41 expressed in mammalian cells and interacted with the polypeptide N36(L8)C34. These results suggest that the scaffolding domain of Cav-1 may bind to the gp41 core via the motif. This interaction may be essential for formation of fusion pore or endocytosis of HIV-1 and affect the pathogenesis of HIV-1 infection. Further characterization of the gp41 core-binding motifs may shed light on the alternative mechanism by which HIV-1 enters into the target cell.  相似文献   

12.
Dimitrov AS  Rawat SS  Jiang S  Blumenthal R 《Biochemistry》2003,42(48):14150-14158
The N-terminal fusion peptide and the interfacial sequence preceding the transmembrane anchor of HIV-1 gp41 are required for viral fusion. Studies with synthetic peptides indicated that these regions function by destabilizing membranes, which is regarded as a crucial step in the membrane fusion reaction. However, it is not clear whether membrane destabilization is induced by these sequences in the intact gp41. We address this question by examining fusion and destabilization of membranes expressing HIV-1(IIIB) wild-type Env and two mutant Envs. (1) A Glu residue at position 2 of the gp41 fusion peptide is substituted for Val (V2E) to produce one mutant. (2) Residues 665-682 in the membrane-proximal domain are deleted to form the other. The process of membrane destabilization was monitored by the influx of Sytox, an impermeant fluorescent dye, into the Env-expressing cells following the interaction with CD4-CXCR4 complexes, and fusion was monitored by observing dye transfer between Env-expressing cells and appropriate target cells. We also monitored the conformational changes in the Envs following their interactions with CD4 and CXCR4 by immunofluorescence using an anti-gp41 mAb that reacts with the six-helix bundle. In contrast to the wild type, both Env mutants did not mediate cell fusion. The V2E Env did not mediate membrane destabilization. However, the Env with an unmodified fusion peptide but with a deletion of residues 665-682 in the membrane-proximal domain did mediate membrane destabilization. The wild type and both mutant Envs undergo conformational changes detected by the anti-gp41 six-helix bundle mAbs. Our results suggest that in intact HIV-1 Env the membrane-proximal domain is not required for membrane perturbations, but rather enables the bending of gp41 that is required for viral and target membranes to come together. Moreover, the observation that the Delta665-683 Env self-inserts its fusion peptide but does not cause fusion suggests that self-insertion of the fusion peptide is not sufficient for HIV-1 Env-mediated fusion.  相似文献   

13.
We have developed a biomimetic sensor for the detection of human immunodeficiency virus type 1 (HIV-1) related protein (glycoprotein 41, gp41) based on epitope imprinting technique. gp41 is the transmembrane protein of HIV-1 and plays an important role in membrane fusion between viruses and infected cells. It is an important index for determining the extent of HIV-1 disease progression and the efficacy of therapeutic intervention. In this work, dopamine was used as the functional monomer and polymerized on the surface of quartz crystal microbalance (QCM) chip in the presence of template, a synthetic peptide with 35 amino acid residues, analogous to residues 579-613 of the gp41. This process resulted in grafting a hydrophilic molecularly imprinted polymer (MIP) film on the QCM chip. QCM measurement showed that the resulting MIP film not only had a great affinity towards the template peptide, but also could bind the corresponding gp41 protein specifically. The dissociation constant (K(d)) of MIP for the template peptide was calculated to be 3.17 nM through Scatchard analysis, which was similar to those of monoclonal antibodies. Direct detection of the gp41 was achieved quantitatively using the resulting MIP-based biomimetic sensor. The detection limit of gp41 was 2 ng/mL, which was comparable to the reported ELISA method. In addition, the practical analytical performance of the sensor was examined by evaluating the detection of gp41 in human urine samples with satisfactory results.  相似文献   

14.
The human immunodeficiency virus, type 1 (HIV-1), gp41 core plays an important role in fusion between viral and target cell membranes. We previously identified an HIV-1 gp41 core-binding motif HXXNPF (where X is any amino acid residue). In this study, we found that Asn, Pro, and Phe were the key residues for gp41 core binding. There are two NPF motifs in Epsin-1-(470-499), a fragment of Epsin, which is an essential accessory factor of endocytosis that can dock to the plasma membrane by interacting with the lipid. Epsin-1-(470-499) bound significantly to the gp41 core formed by the polypeptide N36(L8)C34 and interacted with the recombinant soluble gp41 containing the core structure. A synthetic peptide containing the Epsin-1-(470-499) sequence could effectively block entry of HIV-1 virions into SupT1 T cells via the endocytosis pathway. These results suggest that interaction between Epsin and the gp41 core, which may be present in the target cell membrane, is probably essential for endocytosis of HIV-1, an alternative pathway of HIV-1 entry into the target cell.  相似文献   

15.
16.
Given their high alanine and glycine levels, plaque formation, α-helix to β-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit ‘amyloid-like’ characteristics, by contrasting its structural and functional properties with those of Aβ(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Aβ(26-42) formed similar networked β-sheet fibrils, although the FP fibril interactions were weaker. FP and Aβ(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of α-helix to β-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Aβ(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound β-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an ‘amyloid homolog’ (or ‘amylog’).  相似文献   

17.
The fusion-active conformation of the envelope protein gp41 of HIV-1 consists of an N-terminal trimeric alpha-helical coiled-coil domain and three anti-parallel C-terminal helices that fold down the grooves of the coiled-coil to form a six-helix bundle. Disruption of the six-helix bundle is considered to be a key component of an effective non-peptide fusion inhibitor. In the current study, a fluorescence resonance energy transfer (FRET) experiment for the detection of inhibitor binding to the gp41 N-peptide coiled-coil of HIV-1 was performed, utilizing peptide inhibitors derived from the gp41 C-terminal helical region. The FRET acceptor is a 31-residue N-peptide containing a known deep hydrophobic pocket, stabilized into a trimer by ferrous ion ligation. The FRET donor is a 16-18-residue fluorophore-labeled C-peptide, designed to test the specificity of the N-C interaction. Low microM dissociation constants were observed, correlated to the correct sequence and helical propensity of the C-peptides. Competitive inhibition was demonstrated using the assay, allowing for rank ordering of peptide inhibitors according to their affinity in the 1-20 microM range. The assay was conducted by measuring fluorescence intensity in 384-well plates. The rapid detection of inhibitor binding may permit identification of novel drug classes from a library.  相似文献   

18.
Broadly neutralizing antibodies are not commonly produced in HIV-1 infected individuals nor by experimental HIV-1 vaccines. When these antibodies do occur, it is important to be able to isolate and characterize them to provide clues for vaccine design. CAP206 is a South African subtype C HIV-1-infected individual previously shown to have broadly neutralizing plasma antibodies targeting the envelope gp41 distal membrane proximal external region (MPER). We have now used a fluoresceinated peptide tetramer antigen with specific cell sorting to isolate a human neutralizing monoclonal antibody (mAb) against the HIV-1 envelope gp41 MPER. The isolated recombinant mAb, CAP206-CH12, utilized a portion of the distal MPER (HXB2 amino acid residues, 673-680) and neutralized a subset of HIV-1 pseudoviruses sensitive to CAP206 plasma antibodies. Interestingly, this mAb was polyreactive and used the same germ-line variable heavy (V(H)1-69) and variable kappa light chain (V(K)3-20) gene families as the prototype broadly neutralizing anti-MPER mAb, 4E10 (residues 672-680). These data indicate that there are multiple immunogenic targets in the C-terminus of the MPER of HIV-1 gp41 envelope and suggests that gp41 neutralizing epitopes may interact with a restricted set of naive B cells during HIV-1 infection.  相似文献   

19.
HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.  相似文献   

20.
The human immunodeficiency virus-1 (HIV-1) envelope glycoprotein is composed of a soluble glycopolypeptide gp120 and a transmembrane glycopolypeptide gp41. These subunits form non-covalently linked oligomers on the surface of infected cells, virions and cells transfected with the complete env gene. Two length variants of the extracellular domain of gp41 (aa 21-166 and aa 39-166), that both lack the N-terminal fusion peptide and the C-terminal membrane anchor and cytoplasmic domain, have been expressed in insect cells to yield soluble oligomeric gp41 proteins. Oligomerization was confirmed by chemical cross-linking and gel filtration. Electron microscopy and circular dichroism measurements indicate a rod-like molecule with a high alpha-helical content and a high melting temperature (78 degrees C). The binding of monoclonal antibody Fab fragments dramatically increased the solubility of both gp41 constructs. We propose that gp41 folds into its membrane fusion-active conformation, when expressed alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号