首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 enzymes catalyse a wide variety of reactions, including the hydroxylation and epoxidation of CC bonds, and dealkylation reactions. There is high interest in these reactions for biotechnology and pharmaceutical processes. Many P450s require membrane surroundings and have substrates that do not cross biological membranes. To circumvent these obstacles, CYP106A2 from Bacillus megaterium was expressed on the outer membrane of Escherichia coli cells by Autodisplay. Exposure on the surface was confirmed by a protease accessibility test and flow cytometry after immunolabelling. HPLC assays showed that 0.5 ml of cells displaying the enzyme (OD??? = 6) converted 9.13 μmol of deoxycorticosterone to 15β-OH-deoxycorticosterone within 1h. Imipramine and abietic acid were also accepted as substrates. The number of active enzyme molecules per cell was calculated to be 20,000. Surprisingly, surface-exposed CYP106A2 was active in E. coli BL21 without the external addition of the heme group. However, when CYP106A2 was expressed on the surface of an E. coli strain lacking the TolC channel protein (JW5503), enzymatic activity was almost completely abolished. The activity of CYP106A2 on the surface of E. coli JW5503 could be restored by the external addition of the heme group. This suggests, as has been reported before, that E. coli uses a TolC-dependent mechanism to export heme into the growth media, where it can be scavenged by a surface-displayed apoenzyme. Our results indicate that Autodisplay enables the functional surface display of P450 enzymes and provides a new platform to access their synthetic potential.  相似文献   

2.
Human hepatic cytochrome P450 3A4 (CYP3A4) was expressed in yeast Saccharomyces cerevisiae. While the expression level was high as compared with other human hepatic cytochrome P450s, CYP3A4 showed almost no catalytic activity toward testosterone. Coexpression of CYP3A4 with yeast NADPH-P450 reductase did not give a full activity. Low monooxygenase activity of CYP3A4 was attributed to the insufficient reduction of heme iron of CYP3A4 by NADPH-P450 reductase. To enhance the efficiency of electron transfer from NADPH-P450 reductase to CYP3A4, a fused enzyme was constructed between CYP3A4 and yeast NADPH-P450 reductase. The rapid reduction of the heme iron of the fused enzyme by NADPH was observed. The fused enzyme showed a high testosterone 6beta-hydroxylation activity with a sigmoidal velocity saturation curve. However, the coupling efficiency between NADPH utilization and testosterone 6beta-hydroxylation was only 10%. Finally, coexpression of the fused enzyme and human cytochrome b5 was examined. A significant decrease in the Km value and a remarkable increase in the coupling efficiency were observed. Substrate-induced spectra revealed that the dissociation constant of the fused enzyme for testosterone significantly decreased with coexpression of human cytochrome b5. These results strongly suggest that human cytochrome b5 directly interacts with the CYP3A4 domain of the fused enzyme and modifies the tertiary structure of substrate binding pocket, resulting in tight binding of the substrate and high coupling efficiency.  相似文献   

3.
A cDNA encoding a novel human CYP4F enzyme (designated CYP4F12) was cloned by PCR from a human small intestine cDNA library. RT-PCR analysis demonstrated that CYP4F12 is expressed in human small intestine and liver. This cDNA contains an entire coding region of a 524-amino-acid protein that is 81.7, 78.3, and 78.2% identical to CYP4F2, CYP4F3, and CYP4F8, respectively. When expressed in Saccharomyces cerevisiae, the P450 catalyzes leukotriene B(4) omega-hydroxylation and arachidonic acid omega-hydroxylation, typical reactions of CYP4F isoforms. Their activity levels are, however, much lower than those of CYP4F2. Interestingly, CYP4F12 catalyzes the hydroxylation of the antihistamine ebastine with significantly higher catalytic activity relative to CYP4F2 (385 vs 5 pmol/min/nmol P450). These results indicate that CYP4F12 has a different profile of substrate specificity from other CYP4F isoforms, enzymes responsible for metabolizing endogenous autacoids, therefore suggesting that it may play an important role in xenobiotic biotransformation in the human small intestine.  相似文献   

4.
5.
Bovine adrenodoxin (Adx) was expressed on the surface of Escherichia coli as a monomeric fusion protein with the translocation unit of the AIDA-I autotransporter. The fusion protein remained anchored in the outer membrane by the beta-barrel of the autotransporter. Dimeric Adx molecules were formed spontaneously on the bacterial surface with high efficiencies. Adx dimers could be activated to biological function by chemical incorporation of the [2Fe-2S] cluster. By adding purified adrenodoxin reductase and P450 CYP11A1, a whole cell biocatalyst system was obtained, which effectively synthesized pregnenolone from cholesterol. Addition of artificial membrane constituents or detergents, which was indispensable before to get functional steroidal P450 enzymes, was not necessary. The whole cell activity (0.21 nmol x h(-1) x nmol(-1) CYP11A1) was in the same range as obtained earlier for reconstitution assays. The whole cell system developed here is an easy to handle, stable tool for the expression of membrane-associated P450 enzymes without the need of microsome preparation or reconstitution of artificial membrane vesicles. Moreover, it is the first report on functional dimer formation of a protein anchored on the surface of E. coli after being transported as a monomer. This seems to be a special feature of the autotransporter translocation unit, containing a beta-barrel, motile in the outer membrane and opens a new dimension for the surface display of multimeric proteins.  相似文献   

6.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6alpha-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 microM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6alpha-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6beta-hydroxylation (r2=0.9). There was also a strong correlation between 6alpha-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6beta-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6alpha-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 microM concentration. Other inhibitors, such as alpha-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6alpha-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 microM). This might give an explanation for the limited formation of 6alpha-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

7.
Mammals express multiple cytochromes P450 simultaneously in a variety of tissues, including the liver, kidney, lung, adrenal, gonads, brain, and most others. For cytochromes P450 that are expressed in many tissues or cell types, the tissue/cell type-specific expression might be associated with their special physiological roles. Several cytochrome P450 enzymes are found not only in different cell types and tissues, but also in different subcellular compartments. Generally, all mammalian cytochrome P450 enzymes are membrane bound. The two major groups are represented by microsomal cytochromes P450 that reside in the endoplasmic reticulum, and mitochondrial cytochromes P450, that reside in the inner mitochondrial membrane. However, the outer nuclear membrane, different Golgi compartments, peroxisomes and the plasma membrane are also sites where cytochromes P450 were observed. For example, CYP51 is an ER enzyme in majority of tissues but in male germ cells it trafficks through the Golgi to acrosome, where it is stabilized for several weeks. Surprisingly, in brains of heme synthesis deficient mice, a soluble form of CYP1A1 was detected whose activity has been restored by the addition of heme. In the majority of cases each cytochrome P450 enzyme resides in a single subcellular compartment in a certain cell, however, examples of simultaneous localization in different subcellular compartments have also been described, such as endoplasmic reticulum, Golgi and plasma membrane for CYP2E1. This review will focus on the physiological importance of mammalian cytochrome P450 expression and localization in different tissues or cell types and subcellular compartments.  相似文献   

8.
Mammals express multiple cytochromes P450 simultaneously in a variety of tissues, including the liver, kidney, lung, adrenal, gonads, brain, and most others. For cytochromes P450 that are expressed in many tissues or cell types, the tissue/cell type-specific expression might be associated with their special physiological roles. Several cytochrome P450 enzymes are found not only in different cell types and tissues, but also in different subcellular compartments. Generally, all mammalian cytochrome P450 enzymes are membrane bound. The two major groups are represented by microsomal cytochromes P450 that reside in the endoplasmic reticulum, and mitochondrial cytochromes P450, that reside in the inner mitochondrial membrane. However, the outer nuclear membrane, different Golgi compartments, peroxisomes and the plasma membrane are also sites where cytochromes P450 were observed. For example, CYP51 is an ER enzyme in majority of tissues but in male germ cells it trafficks through the Golgi to acrosome, where it is stabilized for several weeks. Surprisingly, in brains of heme synthesis deficient mice, a soluble form of CYP1A1 was detected whose activity has been restored by the addition of heme. In the majority of cases each cytochrome P450 enzyme resides in a single subcellular compartment in a certain cell, however, examples of simultaneous localization in different subcellular compartments have also been described, such as endoplasmic reticulum, Golgi and plasma membrane for CYP2E1. This review will focus on the physiological importance of mammalian cytochrome P450 expression and localization in different tissues or cell types and subcellular compartments.  相似文献   

9.
The identity and expression of hepatic P450 enzymes in marmosets was investigated using a panel of anti-peptide antibodies originally targeted against human P450 enzymes. In immunoblotting, of 12 antibodies examined, 10 bound specifically to bands in marmoset liver microsomal fraction corresponding to P450 enzymes. It is proposed that these represent marmoset CYP1A1, CYP1A2, CYP2A, CYP2B, CYP2C forms (CYP2C-1 and CYP2C-2), CYP2D19, CYP3A21 and another CYP3A form (CYP3A-m). The antibodies, together with an anti-marmoset CYP2E1 antibody, were used to investigate the expression of 10 P450 enzymes in marmosets treated with P450-inducing chemicals. Treatment with phenobarbitone caused CYP2B, CYP2C-2 and CYP3A21 levels to increase, rifampicin caused increases in CYP2B and CYP2C-1 and a decrease in CYP3A21 levels, whereas dioxin caused CYP1A1 and CYP1A2 levels to increase and CYP2E1 levels to decrease. Clofibric acid did not induce any P450. P450 enzyme activities were assessed using 8 different substrates and increases were found after treatment with phenobarbitone, rifampicin, and dioxin. However, due to species differences in substrate selectivity, it proved difficult to ascribe these changes to individual P450 enzymes. Thus, the use of anti-peptide antibodies provides a more informative way of assessing the levels of specific P450 enzymes than enzyme activity measurements.  相似文献   

10.
HepG2 cell lines that constitutively and stably express human CYP3A4 were constructed in order to study enzyme interactions with CYP3A4 as the only P450 present. CYP3A4 activity and content were assessed by the metabolism of fentanyl, a CYP3A substrate, and Western blots. Northern blots were used to examine the effects of acetaminophen (APAP) on CYP3A4-mRNA. The HepG2 cell lines' CYP3A4 activity was stable over time. High concentrations of APAP inhibited CYP3A4 activity. At lower concentrations, APAP produced a dose-dependent increase in CYP3A4 activity and content. No increases in CYP3A4-mRNA were seen. Incubation with cycloheximide caused a decrease in fentanyl metabolism secondary to a decrease in P450 levels that was prevented by the coincubation with APAP. Additionally, human microsomal CYP3A4 was stabilized by APAP against cytosol-mediated degradation. In our models, APAP appears to increase CYP3A4 activity. This increase appears to be via substrate stabilization. This is the first report that APAP can increase CYP3A4 activity and content in transfected HepG2 cells.  相似文献   

11.
We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids.  相似文献   

12.
Red wine concentrate has been reported to inhibit the catalytic activity of human recombinant cytochrome P450 (CYP) 3A4. Wine contains many polyphenolic compounds, including trans-resveratrol, which is also available commercially as a nutraceutical product. In the present study, we examined the in vitro effect of trans-resveratrol on human CYP3A catalytic activity by employing recombinant CYP3A4 and CYP3A5 as model enzymes and 7-benzyloxy-4-trifluoromethylcoumarin (BFC) as a CYP3A substrate. Trans-resveratrol inhibited BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 in a concentration-dependent manner. In each case, the inhibition was noncompetitive, as determined by Lineweaver-Burk and Dixon plots of the enzyme kinetic data. The apparent Ki values (mean +/- SEM) for the inhibition by trans-resveratrol of BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 were 10.2+/-1.1 microM and 14.7+/-0.3 microM, respectively. Preincubation of trans-resveratrol with NADPH and CYP3A4 or CYP3A5 for 10 or 15 min prior to initiation of substrate oxidation did not enhance the inhibitory effect, suggesting that this compound was not a mechanism-based inactivator of CYP3A4 or CYP3A5 when BFC was used as the substrate. Overall, our study provides the first demonstration that trans-resveratrol inhibits, in vitro, a substrate oxidation reaction catalyzed by human recombinant CYP3A4 and CYP3A5.  相似文献   

13.
Inui H  Maeda A  Ohkawa H 《Biochemistry》2007,46(35):10213-10221
Microsomal cytochrome P450 3A4 (CYP3A4) catalyzes monooxygenase reactions toward a diverse group of exogenous and endogenous substrates and requires cytochrome b5 (b5) in the oxidation of the typical substrate testosterone. To analyze the molecular interaction among CYP3A4, NADPH-cytochrome P450 oxidoreductase (P450 reductase), and b5, we constructed several fused enzyme genes and expressed them in Saccharomyces cerevisiae. The recombinant fused enzymes CYP3A4-truncated (t)-P450 reductase-t-b5 (3RB) and CYP3A4-t-b5-t-P450 reductase (3BR) in yeast microsomes showed a higher specific activity in 6beta-hydroxylation of testosterone than did the reconstitution premixes of CYP3A4, P450 reductase, and b5. The purified fused enzymes exhibited lower Km values and substantially increased Vmax values in 6beta-hydroxylation of testosterone and oxidation of nifedipine. Moreover, the fused enzymes showed significantly higher activities in cytochrome c reduction than the reconstitution premixes. Although the affinity of 3RB toward cytochrome c was twice as high as that of 3BR, 3BR and 3RB showed nearly the same affinity toward NADPH/NADH. In addition, the heme of the CYP3A4 moiety of 3RB was reduced preferentially and more rapidly than that of 3BR, whereas the heme of the b5 moiety of 3BR was selectively reduced compared with that of 3RB. These results suggest that the conformation of the 3RB molecule was the most suitable for high activity because of appropriate ordering of the CYP3A4, P450 reductase, and b5 moieties for efficient electron flow. Thus, we believe that the b5 moiety plays an important role in the efficient transfer of the second electron in the vicinity of the CYP3A4 moiety.  相似文献   

14.
We newly developed 10 Salmonela typhimurium TA1538 strains each co-expressing a form of human cytochrome P450s (P450 or CYP) together with NADPH-cytochrome P450 reductase (CPR) for highly sensitive detection of mutagenic activation of mycotoxins, polycyclic aromatic hydrocarbons, heterocyclic amines, and aromatic amines at low substrate concentrations. Each form of P450 (CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) expressed in the TA1538 cells efficiently catalyzed the oxidation of a representative substrate. Aflatoxin B1 was mutagenically activated effectively by CYP1A1, CYP1A2, and CYP3A4 and weakly by CYP2A6 and CYP2C8 expressed in S. typhimurium TA1538. CYP1A1 and CYP1A2 were responsible for the mutagenic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-acetylaminofluorene. Benzo[a]pyrene was also activated efficiently by CYP1A1 and weakly by CYP1A2, CYP2C9, CYP2C19, and CYP3A4 expressed in TA1538. These results suggest that the newly developed S. typhimurium TA1538 strains are applicable for detecting the activation of promutagens of which mutagenic activation is not or weakly detectable with N-nitrosamine-sensitive YG7108 strains expressing human P450s.  相似文献   

15.
To explore the basis of apparent conformational heterogeneity of cytochrome P450 3A4 (CYP3A4), the kinetics of dithionite-dependent reduction was studied in solution, in proteoliposomes, and in Nanodiscs. In CYP3A4 oligomers in solution the kinetics obeys a three-exponential equation with similar amplitudes of each of the phases. Addition of substrate (bromocriptine) displaces the phase distribution toward the slow phase at the expense of the fast one, while the middle phase remains unaffected. The fraction reduced in the fast phase, either with or without substrate, is represented by the low-spin heme protein only, while the slow-reducible fraction is enriched in the high-spin CYP3A4. Upon monomerization by 0.15% Emulgen-913, or by incorporation into Nanodiscs or into large proteoliposomes with a high lipid-to-protein (L/P) ratio (726:1 mol/mol), the kinetics observed in the absence of substrate becomes very rapid and virtually monoexponential. In Nanodiscs and in lipid-rich liposomes bromocriptine decreases the rate of reduction via appearance of the second (slow) phase, the amplitude of which reaches 100% at saturating bromocriptine. In contrast, in P450-rich liposomes (L/P = 112 mol/mol), where the surface molar density of the enzyme is comparable to that observed in liver microsomes, CYP3A4 behaves similarly to that observed in solution. These results suggest that in CYP3A4 oligomers in solution and in the membrane the enzyme is distributed between two persistent conformers with different accessibility of the heme for the reductant (SO*-(2) anion monomer). One of the apparent conformers exists in a substrate-dependent equilibrium between two states with different rate constants of reduction by dithionite, while the second conformer shows no response to substrate binding.  相似文献   

16.
20-hydroxyeicosatetraenoic acid (20-HETE), an omega-hydroxylated arachidonic acid (AA) metabolite, elicits specific effects on kidney vascular and tubular function that, in turn, influence blood pressure control. The human kidney's capacity to convert AA to 20-HETE is unclear, however, as is the underlying P450 catalyst. Microsomes from human kidney cortex were found to convert AA to a single major product, namely 20-HETE, but failed to catalyze AA epoxygenation and midchain hydroxylation. Despite the monophasic nature of renal AA omega-hydroxylation kinetics, immunochemical studies revealed participation of two P450s, CYP4F2 and CYP4A11, since antibodies to these enzymes inhibited 20-HETE formation by 65. 9 +/- 17 and 32.5 +/- 14%, respectively. Western blotting confirmed abundant expression of these CYP4 proteins in human kidney and revealed that other AA-oxidizing P450s, including CYP2C8, CYP2C9, and CYP2E1, were not expressed. Immunocytochemistry showed CYP4F2 and CYP4A11 expression in only the S2 and S3 segments of proximal tubules in cortex and outer medulla. Our results demonstrate that CYP4F2 and CYP4A11 underlie conversion of AA to 20-HETE, a natriuretic and vasoactive eicosanoid, in human kidney. Considering their proximal tubular localization, these P450 enzymes may partake in pivotal renal functions, including the regulation of salt and water balance, and arterial blood pressure itself.  相似文献   

17.
Benzene is an occupational and environmental toxicant. The main human health concern associated with benzene exposure is leukemia. The toxic effects of benzene are dependent on its metabolism by the cytochrome p450 enzyme system. The cytochrome p450 enzymes CYP2E1 and CYP2F2 are the major contributors to the bioactivation of benzene in rats and mice. Although benzene metabolism has been shown to occur with mouse and human lung microsomal preparations, little is known about the ability of human CYP2F to metabolize benzene or the lung cell types that might activate this toxicant. Our studies compared bronchiolar derived (BEAS-2B) and alveolar derived (A549) human cell lines for benzene metabolizing ability by evaluating the roles of CYP2E1 and CYP2F1. BEAS-2B cells that overexpressed CYP2F1 and recombinant CYP2F1 were also evaluated. BEAS-2B cells overexpressing the enzyme CYP2F1 produced 47.4 +/- 14.7 pmols hydroxylated metabolite/10(6) cells/45 min. The use of the CYP2E1-selective inhibitor diethyldithiocarbamate and the CYP2F2-selective inhibitor 5-phenyl-1-pentyne demonstrated that both CYP2E1 and CYP2F1 are important in benzene metabolism in the BEAS-2B and A549 human lung cell lines. The recombinant expressed human CYP2F1 enzyme had a K(m) value of 3.83 microM and a V(max) value of 0.01 pmol/pmol p450 enzyme/min demonstrating a reasonably efficient catalysis of benzene metabolism (V(max)/K(m) = 2.6). Thus, these studies have demonstrated in human lung cell lines that benzene is bioactivated by two lung-expressed p450 enzymes.  相似文献   

18.
A gas chromatography-mass spectrometry assay method for the analysis of lauric, myristic, and palmitic acids and their omega and omega(-1) hydroxylated metabolites from in vitro incubations of cytochrome P450 CYP4A1, involving solid-phase extraction and trimethysilyl derivatization, was developed. The assay was linear, precise, and accurate over the range 0.5 to 50microM for all the analytes. It has the advantages of a more rapid analysis time, an improved sensitivity, and a wider range of analytes compared with other methods. An artificial membrane system was optimized for application to purified CYP4A1 enzyme by investigating the molar ratios of cytochrome b(5) and cytochrome P450 reductase present in the incubation mixture. Using this method, the kinetics of omega and omega(-1) oxidation of lauric, myristic, and palmitic acids by CYP4A enzymes were measured and compared in rat liver microsomes and an artificial membrane system.  相似文献   

19.
Among 11 isoforms of the human cytochrome P450 enzymes metabolizing xenobiotics, CYP 1A1 and CYP 1A2 were major P450 species in the metabolism of the herbicides chlortoluron and atrazine in a yeast expression system. CYP1A2 was more active in the metabolism of both herbicides than CYP1A1. The fused enzymes of CYP1A1 and CYP1A2 with yeast NADPH-cytochrome P450 oxidoreductase were functionally active in the microsomal fraction of the yeast Saccharomyces cerevisiae and showed increased specific activity towards 7-ethoxyresorufin as compared to CYP1A1 and CYP1A2 alone. Then, both fused enzymes were each expressed in the microsomes of tobacco (Nicotiana tabacum cv. Samsun NN) plants. The transgenic plants expressing the CYP1A2 fusion enzyme had higher resistance to the herbicide chlortoluron than the plants expressing the CYP1A1 fusion enzyme did. The transgenic plants expressing the CYP1A2 fused enzyme metabolized chlortoluron to a larger extent to its non-phytotoxic metabolites through N-demethylation and ring-methyl hydroxylation as compared to the plants expressing the CYP1A1 fused enzyme. Thus, the possibility of increasing the herbicide resistance in the transgenic plants by the selection of P450 species and the fusion with P450 reductase is discussed.  相似文献   

20.
We examined which human CYP450 forms contribute to carbon tetrachloride (CCl(4)) bioactivation using hepatic microsomes, heterologously expressed enzymes, inhibitory antibodies and selective chemical inhibitors. CCl(4) metabolism was determined by measuring chloroform formation under anaerobic conditions. Pooled human microsomes metabolized CCl(4) with a K(m) of 57 microM and a V(max) of 2.3 nmol CHCl(3)/min/mg protein. Expressed CYP2E1 metabolized CCl(4) with a K(m) of 1.9 microM and a V(max) of 8.9 nmol CHCl(3)/min/nmol CYP2E1. At 17 microM CCl(4), a monoclonal CYP2E1 antibody inhibited 64, 74 and 83% of the total CCl(4) metabolism in three separate human microsomal samples, indicating that at low CCl(4) concentrations, CYP2E1 was the primary enzyme responsible for CCl(4) metabolism. At 530 microM CCl(4), anti-CYP2E1 inhibited 36, 51 and 75% of the total CCl(4) metabolism, suggesting that other CYP450s may have a significant role in CCl(4) metabolism at this concentration. Tests with expressed CYP2B6 and inhibitory CYP2B6 antibodies suggested that this form did not contribute significantly to CCl(4) metabolism. Effects of the CYP450 inhibitors alpha-naphthoflavone (CYP1A), sulfaphenazole (CYP2C9) and clotrimazole (CYP3A) were examined in the liver microsome sample that was inhibited only 36% by anti-CYP2E1 at 530 microM CCl(4). Clotrimazole inhibited CCl(4) metabolism by 23% but the other chemical inhibitors were without significant effect. Overall, these data suggest that CYP2E1 is the major human enzyme responsible for CCl(4) bioactivation at lower, environmentally relevant levels. At higher CCl(4) levels, CYP3A and possibly other CYP450 forms may contribute to CCl(4) metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号