首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Th2 cells induce asthma through the secretion of cytokines. Two such cytokines, IL-4 and IL-13, are critical mediators of many features of this disease. They both share a common receptor subunit, IL-4Rα, and signal through the STAT6 pathway. STAT6(-/-) mice have impaired Th2 differentiation and reduced airway response to allergen. Transferred Th2 cells were not able to elicit eosinophilia in response to OVA in STAT6(-/-) mice. To clarify the role of STAT6 in allergic airway inflammation, we generated mouse bone marrow (BM) chimeras. We observed little to no eosinophilia in OVA-treated STAT6(-/-) mice even when STAT6(+/+) BM or Th2 cells were provided. However, when Th2 cells were transferred to STAT6×Rag2(-/-) mice, we observed an eosinophilic response to OVA. Nevertheless, the expression of STAT6 on either BM-derived cells or lung resident cells enhanced the severity of OVA-induced eosinophilia. Moreover, when both the BM donor and recipient lacked lymphocytes, transferred Th2 cells were sufficient to induce the level of eosinophilia comparable with that of wild-type (WT) mice. The expression of STAT6 in BM-derived cells was more critical for the enhanced eosinophilic response. Furthermore, we found a significantly higher number of CD4(+)CD25(+)Foxp3(+) T cells (regulatory T cells [Tregs]) in PBS- and OVA-treated STAT6(-/-) mouse lungs compared with that in WT animals suggesting that STAT6 limits both naturally occurring and Ag-induced Tregs. Tregs obtained from either WT or STAT6(-/-) mice were equally efficient in suppressing CD4(+) T cell proliferation in vitro. Taken together, our studies demonstrate multiple STAT6-dependent and -independent features of allergic inflammation, which may impact treatments targeting STAT6.  相似文献   

2.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

3.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

4.
5.
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma.  相似文献   

6.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

7.
Most infections with respiratory viruses induce Th1 responses characterized by the generation of Th1 and CD8(+) T cells secreting IFN-gamma, which in turn have been shown to inhibit the development of Th2 cells. Therefore, it could be expected that respiratory viral infections mediate protection against asthma. However, the opposite seems to be true, because viral infections are often associated with the exacerbation of asthma. For this reason, we investigated what effect an influenza A (flu) virus infection has on the development of asthma. We found that flu infection 1, 3, 6, or 9 wk before allergen airway challenge resulted in a strong suppression of allergen-induced airway eosinophilia. This effect was associated with strongly reduced numbers of Th2 cells in the airways and was not observed in IFN-gamma- or IL-12 p35-deficient mice. Mice infected with flu virus and immunized with OVA showed decreased IL-5 and increased IFN-gamma, eotaxin/CC chemokine ligand (CCL)11, RANTES/CCL5, and monocyte chemoattractant protein-1/CCL2 levels in the bronchoalveolar lavage fluid, and increased airway hyperreactivity compared with OVA-immunized mice. These results suggest that the flu virus infection reduced airway eosinophilia by inducing Th1 responses, which lead to the inefficient recruitment of Th2 cells into the airways. However, OVA-specific IgE and IgG1 serum levels, blood eosinophilia, and goblet cell metaplasia in the lung were not reduced by the flu infection. Flu virus infection also directly induced AHR and goblet cell metaplasia. Taken together, our results show that flu virus infections can induce, exacerbate, and suppress features of asthmatic disease in mice.  相似文献   

8.
Found in inflammatory zone (FIZZ)1, also known as resistin-like molecule alpha, belongs to a novel class of cysteine-rich secreted protein family, named FIZZ/resistin-like molecule, with unique tissue expression patterns. FIZZ1 is induced in alveolar type II epithelial cells (AECs) in bleomycin (BLM)-induced lung fibrosis, and found to induce myofibroblast differentiation in vitro. The objective of this study was to elucidate the regulation of AEC FIZZ1 expression in pulmonary fibrosis. AECs were isolated from rat lungs and the effects of a number of cytokines on FIZZ1 expression were evaluated by RT-PCR. Of all cytokines examined, only IL-4 and IL-13 were effective in stimulating FIZZ1 expression in AECs. Stimulation by IL-4/IL-13 was accompanied by increases in phosphorylated STAT6 and JAK1. FIZZ1 expression was also stimulated by transfection with a STAT6 expression plasmid, but was inhibited by antisense oligonucleotides directed against STAT6. In vivo studies showed that compared with wild-type controls, both IL-4- and IL-13-deficient mice showed reduced BLM-induced lung FIZZ1 expression and fibrosis, which were essentially abolished in IL-4 and IL-13 doubly deficient mice. Furthermore, STAT6-deficient mice showed marked reduction in BLM-induced lung FIZZ1 expression. Thus, IL-4 and IL-13 are potent inducers of AEC FIZZ1 expression via STAT6 and play key roles in BLM-induced lung FIZZ1 expression and fibrosis. This represents a potential mechanism by which IL-4/IL-13 could play a role in the pathogenesis of lung fibrosis.  相似文献   

9.
In this study we investigated the impact of chronic allergen exposure on airway inflammation and humoral responses in sensitized mice. We observed marked eosinophilia in the bronchoalveolar lavage, lung tissue, and peripheral blood after 2 wk of exposure. In contrast, eosinophilia was markedly reduced by 3 wk and completely resolved by 4 wk of exposure, despite the continued presence of Ag. Decreases in airway eosinophilia were associated with a robust humoral response. We observed that levels of OVA-specific IgE, IgG1, and IgG2a increased during the course of exposure. To assess whether continuous exposure to Ag impacts the ability of the lung to respond to subsequent Ag challenge, mice were exposed to either 2 or 4 wk of OVA in the context of GM-CSF. All groups were then rested for 28 days and exposed to OVA on three consecutive days. We observed a significant decrease in airway eosinophilia and IL-5 expression in the bronchoalveolar lavage and serum in mice initially exposed to 4 wk of OVA, compared with animals exposed to 2 wk only. However, in both groups expression of B7.2 on dendritic cells as well as CD25, CD69, and T1/ST2 on CD4(+) T cells was enhanced, suggesting immune activation. Delivery of rGM-CSF fully restored airway eosinophilia. This study shows that exposure to innocuous Ag alone does not lead to persistent eosinophilic airway inflammation, but rather to abrogated eosinophilia. This suppression can be reversed by GM-CSF.  相似文献   

10.
Tissue eosinophilia probably plays important roles in the pathophysiology of bronchial asthma and allergic disorders; however, this concept was challenged recently by controversial results in mouse models of bronchial asthma treated with anti-IL-5 Ab and the failure of anti-IL-5 therapy in humans. We have now used a unique model, IL-5 transgenic (TG) mice, to address a fundamental question: is airway eosinophilia beneficial or detrimental in the allergic response? After sensitization and challenge with OVA, IL-5 TG mice showed a marked airway eosinophilia. Surprisingly, these IL-5 TG mice showed lower airway reactivity to methacholine. Immunohistochemical analysis of the lungs revealed a marked peribronchial infiltration of eosinophils, but no eosinophil degranulation. In vitro, mouse eosinophils from peritoneal lavage fluids did not produce superoxide anion, but did produce an anti-inflammatory and fibrotic cytokine, TGF-beta 1. Indeed, the TGF-beta 1 levels in bronchoalveolar lavage fluid specimens from IL-5 TG mice directly correlated with airway eosinophilia (r = 0.755). Furthermore, anti-IL-5 treatment of IL-5 TG mice decreased both airway eosinophilia and TGF-beta 1 levels in bronchoalveolar lavage fluids and increased airway reactivity. Thus, in mice, marked eosinophilia prevents the development of airway hyper-reactivity during an allergic response. Overall, the roles of eosinophils in asthma and in animal models need to be addressed carefully for their potentially detrimental and beneficial effects.  相似文献   

11.
We investigated the effects of IFN-gamma-inducing factor (IL-18) in a ragweed (RW) mouse model of allergic asthma. Administration of IL-18 in conjunction with allergic sensitization and challenge in wild-type, but not IFN-gamma -/- mice, inhibited the bronchoalveolar lavage (BAL) eosinophilia induced by RW challenge, and increased serum levels of RW-specific IgG2a and production of IFN-gamma from splenocytes cultured with RW, indicating a critical role for IFN-gamma in mediating these effects. Paradoxically, the same treatment schedule in WT mice increased serum levels of RW-specific IgE and IgG1, and production of IL-4 and IL-5 from splenocytes cultured with RW. When the effects of the same IL-18 treatment schedule were allowed to mature for 3 wk, the inhibition of lung eosinophil recruitment was replaced by augmentation of lung eosinophil recruitment. In another experiment, IL-18 administered only with allergic sensitization increased BAL eosinophilia and lung expression of IL-5 and IFN-gamma, while IL-18 administered only with RW challenge decreased BAL eosinophilia and increased lung IFN-gamma expression, while lung expression of IL-5 remained unchanged. IL-18 administered without RW or adjuvant to naive mice increased total serum IgE levels. Finally, intrapulmonary administrations of IL-18 plus RW in naive mice dramatically increased Th2 cytokine production, IgE levels, eosinophil recruitment, and airway mucus, demonstrating induction of allergic sensitization. This is the first report demonstrating that IL-18 promotes a Th2 phenotype in vivo, and potently induces allergic sensitization. These results suggest that IL-18 may contribute to the pathogenesis of allergic asthma.  相似文献   

12.
Uteroglobin-related protein 1 (UGRP1) is a secretory protein, highly expressed in epithelial cells of airways. Although an involvement of UGRP1 in the pathogenesis of asthma has been suggested, its function in airways remains unclear. In the present study, a relationship between airway inflammation, UGRP1 expression, and interleukin-9 (IL-9), an asthma candidate gene, was evaluated by using a murine model of allergic bronchial asthma. A severe airway inflammation accompanied by airway eosinophilia and elevation of IL-9 in bronchoalveolar lavage (BAL) fluids was observed after ovalbumin (OVA) challenge to OVA-sensitized mice. In this animal model of airway inflammation, lung Ugrp1 mRNA expression was greatly decreased compared with control mice. A significant inverse correlation between lung Ugrp1 mRNA levels and IL-9 levels in BAL fluid was demonstrated by regression analysis (r = 0.616, P = 0.023). Immunohistochemical analysis revealed a distinct localization of UGRP1 in airway epithelial cells of control mice, whereas UGRP1 staining was patchy and faint in inflamed airways. Intranasal administration of IL-9 to naive mice decreased the level of Ugrp1 expression in lungs. These findings suggest that UGRP1 is downregulated in inflamed airways, such as allergic asthmatics, and IL-9 might be an important mediator for modulating UGRP1 expression.  相似文献   

13.
Effector CD8+ T cells mediate inflammation and airway hyper-responsiveness   总被引:3,自引:0,他引:3  
Allergic asthma is a complex syndrome characterized by airway obstruction, airway inflammation and airway hyper-responsiveness (AHR). Using a mouse model of allergen-induced AHR, we previously demonstrated that CD8-deficient mice develop significantly lower AHR, eosinophilic inflammation and interleukin (IL)-13 levels in bronchoalveolar lavage fluid compared with wild-type mice. These responses were restored by adoptive transfer of antigen-primed CD8(+) T cells. Previously, two distinct populations of antigen-experienced CD8(+) T cells, termed effector (T(EFF)) and central memory (T(CM)) cells, have been described. After adoptive transfer into CD8-deficient mice, T(EFF), but not T(CM), cells restored AHR, eosinophilic inflammation and IL-13 levels. T(EFF), but not T(CM), cells accumulated in the lungs, and intracellular cytokine staining showed that the transferred T(EFF) cells were a source of IL-13. These data suggest an important role for effector CD8(+) T cells in the development of AHR and airway inflammation, which may be associated with their Tc2-type cytokine production and their capacity to migrate into the lung.  相似文献   

14.
Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice   总被引:10,自引:0,他引:10  
Intracellular signaling pathways that converge on Smad 3 are used by both TGF-beta and activin A, key cytokines implicated in the process of fibrogenesis. To determine the role of Smad 3 in allergen-induced airway remodeling, Smad 3-deficient and wild-type (WT) mice were sensitized to OVA and challenged by repetitive administration of OVA for 1 mo. Increased levels of activin A and increased numbers of peribronchial TGF-beta1(+) cells were detected in WT and Smad 3-deficient mice following repetitive OVA challenge. Smad 3-deficient mice challenged with OVA had significantly less peribronchial fibrosis (total lung collagen content and trichrome staining), reduced thickness of the peribronchial smooth muscle layer, and reduced epithelial mucus production compared with WT mice. As TGF-beta and Smad 3 signaling are hypothesized to mediate differentiation of fibroblasts to myofibroblasts in vivo, we determined the number of peribronchial myofibroblasts (Col-1(+) and alpha-smooth muscle actin(+)) as assessed by double-label immunofluorescence microscopy. Although the number of peribronchial myofibroblasts increased significantly in WT mice following OVA challenge, there was a significant reduction in the number of peribronchial myofibroblasts in OVA-challenged Smad 3-deficient mice. There was no difference in levels of eosinophilic airway inflammation or airway responsiveness in Smad 3-deficient compared with WT mice. These results suggest that Smad 3 signaling is required for allergen-induced airway remodeling, as well as allergen-induced accumulation of myofibroblasts in the airway. However, Smad 3 signaling does not contribute significantly to airway responsiveness.  相似文献   

15.
Airway eosinophilic inflammation is a characteristic feature of allergic asthma. Exposure to allergens produced by the German cockroach (Blattella germanica) is a risk factor for allergic disease in genetically predisposed individuals, and has been linked to an increase in asthma morbidity among cockroach-sensitive inner city children. To determine the role and contribution of specific HLA class II in the pathogenesis of allergic airway inflammation in cockroach-induced asthma, we generated double-transgenic, double-knockout mice expressing human HLA-DQ8, HLA-DQ6, and CD4 molecules in the absence of mouse class II and mouse CD4. Mice were actively immunized and later challenged intranasally with cockroach allergen extract. These mice developed bronchoalveolar lavage fluid (BALF) eosinophilia and pulmonary eosinophilia. This was accompanied by an increase in total protein levels, IL-5, and IL-13 in BALF. There were also elevated levels of cockroach-specific serum IgG1 and total serum IgE. Histological analysis revealed peribronchial and perivascular eosinophilic inflammation in cockroach-treated mice. Other pathologic changes in the airways were epithelial cell hypertrophy and mucus production. Treatment with anti-DQ mAb significantly reduced pulmonary and BALF eosinophilia in cockroach allergen-sensitized mice. Abeta(0) mice and transgenic mice expressing human CD4 molecule alone (without class II) or human HLA-DQ8 molecule (without CD4) treated in the same fashion showed no eosinophilia in bronchoalveolar fluid and no pulmonary parenchymal inflammation. Our results provide direct evidence that HLA-DQ molecules and CD4 T cells mediate cockroach-induced eosinophilic inflammation in the airways.  相似文献   

16.
Innate immunity provides the first line of response to invading pathogens and a variety of environmental insults. Recent studies identified novel subsets of innate lymphoid cells that are capable of mediating immune responses in mucosal organs. In this paper, we describe a subset of lymphoid cells that is involved in innate type 2 immunity in the lungs. Airway exposure of naive BALB/c or C57BL/6J mice to IL-33 results in a rapid (<12 h) production of IL-5 and IL-13 and marked airway eosinophilia independently of adaptive immunity. In the lungs of nonsensitized naive mice, IL-33-responsive cells were identified that have a lymphoid morphology, lack lineage markers, highly express CD25, CD44, Thy1.2, ICOS, Sca-1, and IL-7Rα (i.e., Lin(-)CD25(+)CD44(hi) lymphoid cells), and require IL-7Rα for their development. Airway exposure of naive mice to a clinically relevant ubiquitous fungal allergen, Alternaria alternata, increases bronchoalveolar lavage levels of IL-33, followed by IL-5 and IL-13 production and airway eosinophilia without T or B cells. This innate type 2 response to the allergen is nearly abolished in mice deficient in IL-33R (i.e., ST2), and the Lin(-)CD25(+)CD44(hi) lymphoid cells in the lungs are required and sufficient to mediate the response. Thus, a subset of innate immune cells that responds to IL-33 and vigorously produces Th2-type cytokines is present in mouse lungs. These cells may provide a novel mechanism for type 2 immunity in the airways and induction of allergic airway diseases such as asthma.  相似文献   

17.

Background

Transglutaminase 2 (TG2) is a post-translational protein-modifying enzyme that catalyzes the transamidation reaction, producing crosslinked or polyaminated proteins. Increased TG2 expression and activity have been reported in various inflammatory conditions, such as rheumatoid arthritis, inflammation-associated pulmonary fibrosis, and autoimmune encephalitis. In particular, TG2 from epithelial cells is important during the initial inflammatory response in the lung. In this study, we evaluated the role of TG2 in the pathogenesis of allergic asthma, particularly whether TG2 affects initial activation signaling leading to Th2 differentiation against antigens.

Methods

We induced allergic asthma by ovalbumin sensitization and intranasal challenge in wild-type (WT) BALB/c and TG2-deficient mice. Broncheoalveolar lavage fluid cells and intracellular cytokine production were analyzed by flow cytometry. Interleukin (IL)-33 and TG2 expression in lung epithelial cells was detected by confocal microscopy.

Results

Airway responsiveness was attenuated in TG2-deficient mice compared to that in the WT control. In addition, recruitment of eosinophils and Th2 and Th17 differentiation decreased in TG2-deficient mice. Treatment with cysteamine, a transglutaminase inhibitor, also reduced airway hypersensitivity, inflammatory cell recruitment, and T helper cell differentiation. TG2-deficient mice showed reduced IL-33 expression following induction of allergic asthma compared to those in the WT control.

Conclusions

We found that pulmonary epithelial cells damaged by allergens triggered TG2-mediated IL-33 expression leading to type 2 responses by recruiting both innate and adaptive arms of the immune system.  相似文献   

18.
Lack of sufficient IL-12 production has been suggested to be one of the basic underlying mechanisms in atopy, but a potential role of IL-12 in established allergic airway disease remains unclear. We took advantage of a mouse model of experimental asthma to study the role of IL-12 during the development of bronchial inflammation. Administration of anti-IL-12p35 or anti-IL-12p40 mAb to previously OVA-sensitized BALB/c mice concomitantly with exposure to nebulized OVA, abolished both the development of bronchial hyperresponsiveness to metacholine as well as the eosinophilia in bronchoalveolar lavage fluid and peripheral blood. Anti-IL-12 treatment reduced CD4(+) T cell numbers and IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid and the mRNA expression of IL-10, eotaxin, RANTES, MCP-1, and VCAM-1 in the lung. Anti-IL-12p35 treatment failed to show these effects in IFN-gamma knockout mice pointing to the essential role of IFN-gamma in IL-12-induced effects. Neutralization of IL-12 during the sensitization process aggravated the subsequent development of allergic airway inflammation. These data together with recent information on the role of dendritic cells in both the sensitization and effector phase of allergic respiratory diseases demonstrate a dual role of IL-12. Whereas IL-12 counteracts Th2 sensitization, it contributes to full-blown allergic airway disease upon airway allergen exposure in the postsensitization phase, with enhanced recruitment of CD4(+) T cells and eosinophils and with up-regulation of Th2 cytokines, chemokines, and VCAM-1. IFN-gamma-producing cells or cells dependent on IFN-gamma activity, play a major role in this unexpected proinflammatory effect of IL-12 in allergic airway disease.  相似文献   

19.
Allergen-specific CTL have a protective effect on allergic airway inflammation, a function thought to be mediated by cytokines, especially IFN-γ. However, the contribution of cytotoxic function to this protective effect has not been investigated. We examined the contribution of cytotoxic function to the therapeutic effect of allergen-specific CTL in allergic airway inflammation. We used a murine model of allergic airway inflammation in which mice were sensitized to OVA and then challenged with the same Ag via the intranasal route. CTL were elicited in these mice by immunization with dendritic cells (DC) or by adoptive transfer of in vitro-activated CD8(+) T cells. Hallmark features of allergic asthma, such as infiltration of eosinophils in the bronchoalveolar lavage fluid and mucus production, were assessed. Suppression of allergic airway inflammation by allergen-specific CTL was critically dependent on the expression of perforin, a key component of the cytotoxic machinery. Both perforin-sufficient and perforin-deficient allergen-specific CTL were recovered from the lungs of allergen-sensitized mice and upregulated CD69 expression and secreted the cytokines IFN-γ and TNF-α upon intranasal allergen challenge. However, only perforin-sufficient CTL inhibited eosinophil infiltration in the airway, mucus production, and cytokine accumulation in the bronchoalveolar lavage fluid. Treatment with allergen-specific CTL, but not their perforin-deficient counterparts, was also associated with a decrease in the number of DC in the mediastinal lymph node. Our data suggest that the cytotoxic function of allergen-specific CD8(+) T cells is critical to their ability to moderate allergic airway inflammation.  相似文献   

20.
Dendritic cells (DCs) are professional APCs that have a unique capacity to initiate primary immune responses, including tolerogenic responses. We have genetically engineered bone marrow-derived DCs to express the immunosuppressive cytokine IL-10 and tested the ability of these cells to control experimental asthma. A single intratracheal injection of OVA-pulsed IL-10-transduced DCs (OVA-IL-10-DCs) to naive mice before OVA sensitization and challenge prevented all of the cardinal features of airway allergy, namely, eosinophilic airway inflammation, airway hyperreactivity, and production of mucus, Ag-specific Igs, and IL-4. OVA-IL-10-DCs also reversed established experimental asthma and had long-lasting and Ag-specific effects. We furthermore showed, by using IL-10-deficient mice, that host IL-10 is required for mediating the immunomodulatory effects of OVA-IL-10-DCs and demonstrated a significant increase in the percentage of OVA-specific CD4(+)CD25(+)Foxp3(+)IL-10(+) regulatory T cells in the mediastinal lymph nodes of OVA-IL-10-DC-injected mice. Finally, adoptive transfer of CD4(+) mediastinal lymph node T cells from mice injected with OVA-IL-10-DCs protected OVA-sensitized recipients from airway eosinophilia upon OVA provocation. Our study describes a promising strategy to induce long-lasting Ag-specific tolerance in airway allergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号