首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-cell signalling is an essential process in the formation of multicellular organisms. Notch is the receptor of an evolutionarily conserved signalling pathway regulating numerous developmental decisions. Indeed, its misregulation is linked to multiple developmental and physiological disorders. Notch and its ligands are distributed widely throughout development, yet Notch activity is highly controlled and restricted in time and space. Recent advances have highlighted that endocytosis followed by endosomal sorting of both the Notch receptor and its ligands is an essential mechanism by which Notch-mediated signalling is developmentally controlled.  相似文献   

2.
3.
The Notch signalling pathway is an evolutionarily conserved cell-to-cell communication system utilized multiple times and in many tissues during development. The outcome of an interaction between Notch and its ligands is highly influenced by factors both extrinsic and intrinsic to Notch expressing cells, suggesting that Notch functions either directly or in parallel with other signalling systems to regulate cellular differentiation events. Protein domains common to all ligands and receptors of this system suggest conserved functional properties that likely relate to regulatory mechanisms for Notch signalling. Within this review, the known functional properties of these domains are analyzed with respect to their contributions to ligand/receptor interactions and Notch signalling.  相似文献   

4.
The insulin-like growth factor receptor type 1 (IGF1R) signalling pathway is activated in the mammalian nervous system from early developmental stages. Its major effect on developing neural cells is to promote their growth and survival. This pathway can integrate its action with signalling pathways of growth and morphogenetic factors that induce cell fate specification and selective expansion of specified neural cell subsets. This suggests that during developmental and adult neurogenesis cellular responses to many signalling factors, including ligands of Notch, sonic hedgehog, fibroblast growth factor family members, ligands of the epidermal growth factor receptor, bone morphogenetic proteins and Wingless and Int-1, may be modified by co-activation of the IGF1R. Modulation of cell migration is another possible role that IGF1R activation may play in neurogenesis. Here, I briefly overview neurogenesis and discuss a role for IGF1R-mediated signalling in the developing and mature nervous system with emphasis on crosstalk between the signalling pathways of the IGF1R and other factors regulating neural cell development and migration. Studies on neural as well as on non-neural cells are highlighted because it may be interesting to test in neurogenic paradigms some of the models based on the information obtained in studies on non-neural cell types.  相似文献   

5.
6.
Notch receptors and their cognate ligands transduce crucial signals between cells in various tissues, and have been conserved across millions of years of evolution. Mutations in Notch signalling components result in congenital heart defects in humans and mice, demonstrating an essential role for Notch in cardiovascular development. The results of recent experiments implicate this signalling pathway in many stages of heart development, and provide mechanistic insight into the vital functions of Notch in the aetiology of several common forms of paediatric and adult cardiac disease.  相似文献   

7.
The development and patterning of the wing in Drosophila relies on a sequence of cell interactions molecularly driven by a number of ligands and receptors. Genetic analysis indicates that a receptor encoded by the Notch gene and a signal encoded by the wingless gene play a number of interdependent roles in this process and display very strong functional interactions. At certain times and places, during wing development, the expression of wingless requires Notch activity and that of its ligands Delta and Serrate. This has led to the proposal that all the interactions between Notch and wingless can be understood in terms of this regulatory relationship. Here we have tested this proposal by analysing interactions between Delta- and Serrate-activated Notch signalling and Wingless signalling during wing development and patterning. We find that the cell death caused by expressing dominant negative Notch molecules during wing development cannot be rescued by coexpressing Nintra. This suggests that the dominant negative Notch molecules cannot only disrupt Delta and Serrate signalling but can also disrupt signalling through another pathway. One possibility is the Wingless signalling pathway as the cell death caused by expressing dominant negative Notch molecules can be rescued by activating Wingless signalling. Furthermore, we observe that the outcome of the interactions between Notch and Wingless signalling differs when we activate Wingless signalling by expressing either Wingless itself or an activated form of the Armadillo. For example, the effect of expressing the activated form of Armadillo with a dominant negative Notch on the patterning of sense organ precursors in the wing resembles the effects of expressing Wingless alone. This result suggests that signalling activated by Wingless leads to two effects, a reduction of Notch signalling and an activation of Armadillo.  相似文献   

8.
Notch signalling is critical to help direct T-cell lineage commitment in early T-cell progenitors and in the development of αβ T-cells. Epithelial and stromal cell populations in the thymus express the Notch DSL (Delta, Serrate and Lag2)ligands Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged 1 and Jagged 2, and induce Notch signalling in thymocytes that express the Notch receptor. At present there is nothing known about the role of the Delta-like 3 (Dll3) ligand in the immune system. Here we describe a novel cell autonomous role for Dll3 in αβ T-cell development. We show that Dll3 cannot activate Notch when expressed in trans but like other Notch ligands it can inhibit Notch signalling when expressed in cis with the receptor. The loss of Dll3 leads to an increase in Hes5 expression in double positive thymocytes and their increased production of mature CD4(+) and CD8(+) T cells. Studies using competitive irradiation chimeras proved that Dll3 acts in a cell autonomous manner to regulate positive selection but not negative selection of autoreactive T cells. Our results indicate that Dll3 has a unique function during T-cell development that is distinct from the role played by the other DSL ligands of Notch and is in keeping with other recent studies indicating that Dll1 and Dll3 ligands have non-overlapping roles during embryonic development.  相似文献   

9.
Notch signalling: a simple pathway becomes complex   总被引:3,自引:0,他引:3  
A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.  相似文献   

10.
The interaction of neighboring cells via Notch signalling leads to cell fate determination, differentiation and patterning of highly organized tissues. Mice with targeted disruption of genes from the Notch signal transduction pathway display defects in the developing somites, neurogenic structures, blood vessels, heart and other organs. Recent studies have added requirements for Notch signalling during kidney, pancreas and thymus morphogenesis. Here, we describe the expression of all four receptors (Notch1-4), the five transmembrane ligands (Dll1, 3, 4, Jag1 and Jag2), intracellular effectors (the Hey genes) and extracellular modulators (Lfng, Mfng, Rfng) in the developing mouse metanephros. Our results point to a Lfng-dependent role for Notch signalling in the development of nephron segments, especially the proximal tubules.  相似文献   

11.
12.
13.
14.
15.
Notch is the receptor in a signalling pathway that operates in a diverse spectrum of developmental processes. Its ligands (e.g. Serrate) are transmembrane proteins whose signalling competence is regulated by the endocytosis-promoting E3 ubiquitin ligases, Mindbomb1 and Neuralized. The ligands also inhibit Notch present in the same cell (cis-inhibition). Here, we identify two conserved motifs in the intracellular domain of Serrate that are required for efficient endocytosis. The first, a dileucine motif, is dispensable for trans-activation and cis-inhibition despite the endocytic defect, demonstrating that signalling can be separated from bulk endocytosis. The second, a novel motif, is necessary for interactions with Mindbomb1/Neuralized and is strictly required for Serrate to trans-activate and internalise efficiently but not for it to inhibit Notch signalling. Cis-inhibition is compromised when an ER retention signal is added to Serrate, or when the levels of Neuralized are increased, and together these data indicate that cis-inhibitory interactions occur at the cell surface. The balance of ubiquitinated/unubiquitinated ligand will thus affect the signalling capacity of the cell at several levels.  相似文献   

16.
Multiple levels of Notch signal regulation (review)   总被引:6,自引:0,他引:6  
Notch is a vitally important signalling receptor controlling cell fate determination and pattern formation in numerous ways during development of both invertebrate and vertebrate species. An intriguing pathway for the Notch signal has emerged where, after ligand-dependent proteolysis, an intracellular fragment of the receptor itself translocates to the nucleus to regulate gene expression. The nuclear activity of the Notch intracellular domain is linked to complexes regulating chromatin organization through histone deacetylation and acetylation. To allow the Notch signal to be deployed in numerous contexts, many different mechanisms have evolved to regulate the level, duration and spatial distribution of Notch activity. Regulation occurs at multiple levels including patterns of ligand and receptor expression, Notch-ligand interactions, trafficking of the receptor and ligands, and covalent modifications including glycosylation, phosphorylation and ubiquitination. Several Notch regulatory proteins have conserved domains that link them to the ubiquitination pathway, and ubiquitination of the Notch intracellular domain has recently been linked to its degradation. Different proteolytically derived isoforms of Notch have also been identified that may be involved in alternative Notch-dependent signals or regulatory mechanisms, and differences between the four mammalian Notch homologues are beginning to be appreciated.  相似文献   

17.
18.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   

19.
Notch信号通路是在进化上非常保守的单次跨膜信号受体蛋白家族,广泛表达于脊椎动物与无脊椎动物中,主要由Notch受体、Notch配体及细胞内效应分子CSL蛋白组成。Notch信号通路是多种组织和器官早期发育所必需的细胞间调节信号,参与对细胞增殖、分化、凋亡的调控。近年的研究表明,Notch信号通路参与肺纤维化的发生发展,阻断或激活这一途径可以影响肺纤维化的进展,本文就Notch信号通路与肺纤维化的关系的研究进展做一综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号