首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
Pheochromocytoma (PCC) and abdominal paraganglioma (PGL) are neuroendocrine tumors that present with clinical symptoms related to increased catecholamine levels. About a third of the cases are associated with constitutional mutations in pre-disposing genes, of which some may also be somatically mutated in sporadic cases. However, little is known about inactivating epigenetic events through promoter methylation in these very genes. Using bisulphite pyrosequencing we assessed the methylation density of 11 PCC/PGL disease genes in 96 tumors (83 PCCs and 13 PGLs) and 34 normal adrenal references. Gene expression levels were determined by quantitative RT-PCR. Both tumors and normal adrenal samples exhibited low methylation index (MetI) in the EGLN1 (PDH2), MAX, MEN1, NF1, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127 promoters, not exceeding 10% in any of the samples investigated. Aberrant RET promoter methylation was observed in two cases only. For the VHL gene we found increased MetI in tumors as compared with normal adrenals (57% vs. 27%; P < 0.001), in malignant vs. benign tumors (63% vs. 55%; P < 0.05), and in PGL vs. PCC (66% vs. 55%; P < 0.0005). Decreased expression of the VHL gene was observed in all tumors compared with normal adrenals (P < 0.001). VHL MetI and gene expressions were inversely correlated (R = −0.359, P < 0.0001). Our results show that the VHL gene promoter has increased methylation compared with normal adrenals (MetI > 50%) in approximately 75% of PCCs and PGLs investigated, highlighting the role of VHL in the development of these tumors.  相似文献   

4.
Phaeochromocytomas (PCCs) and paragangliomas (PGLs) are rare, catecholamine-producing tumors. Most familial PCC/PGLs have been detected to be autosomal dominantly inherited. However, this study was undertaken in a family with PCCs to determine candidate genes in a dominant or recessive inheritance pattern. After excluding mutations in ten PCC/PGL susceptibility genes by Sanger sequencing, we used whole exome sequencing for screening on the four family members to discover novel candidate genes associated with PCCs. Based on the inexistence of non-synonymous mutations or indels in the ten known genes and the structure of this pedigree, 3 damaging loci with dominant inheritance pattern, and 5 damaging loci with recessive homozygous inheritance pattern and 6 damaging genes with compound heterozygous inheritance pattern were narrowed down to indicate the association with PCCs. According to the Gene Ontology (GO) category analysis on the combined results, cell adhesion showed the most significant enrichment.  相似文献   

5.
Paragangliomas (PGLs) are neuroendocrine tum-ors that arise embryologically from the neural crest. Sympathetic PGLs can be located in the thoracic-abdominal region while parasympathetic PGLs are mainly situated in the head and neck region. Most PGLs are sporadic, but in 30% of cases they are hereditary (associated with mutations of SDHB, SDHC, SDHD, SDHAF2, SDHA, TMEM, MAX, and VHL); they can be classified into 4 different paraganglioma syndromes: PGL1, PGL2, PGL3, and PGL4. Surgery is the treatment of choice for both sympathetic and parasympathetic PGLs. Other types of treatment include medical agents (such as gemcitabine, cisplatin, or sunitinib) and radiotherapy (external-beam radiotherapy or stereotactic surgery). Surgery and radiotherapy, however, can cause important side effects such as vascular complications and peripheral nerve damage (hypoglossal, recurrent laryngeal, glossopharyngeal, and vagus). Another possible treatment option is the use of peptide receptor radionuclide therapy (PRRT), including PRRT with 177Lu-DOTATATE. We studied 4 patients with hereditary nonmetastatic paraganglioma syndrome type 1 (PGL1), with progressive disease, in whom surgical excision was not possible. They were treated with 177Lu-DOTATATE (3-5 cycles) and all had a partial response (PR) or a stable disease (SD) to the treatment. In conclusion, a good alternative treatment when surgical or radiation therapy are contraindicated could be radiometabolic therapy with 177Lu-DOTATATE.  相似文献   

6.
The identification of 9 susceptibility genes for paraganglioma/pheochromocytoma between 2001 and 2010 has led to the development of routine genetic tests. To study the evolution in genetic screening for paraganglioma/pheochromocytoma over the past decade, we carried out a retrospective study on the tests performed in our laboratory from January 2001 to December 2010. A genetic test for paraganglioma/pheochromocytoma was assessed for 2 499 subjects, 1 620 index cases, and 879 presymptomatic familial genetic tests. A germline mutation in a PGL/PCC susceptibility gene was identified in 363 index cases (22.4%): 269 in SDHx genes (137 in SDHB, 100 in SDHD, 30 in SDHC, 2 in SDHA), 64 in VHL, 23 in RET, and 7 in TMEM127. A presymptomatic paraganglioma/pheochromocytoma test was positive in 427 subjects. Advances in molecular screening techniques led to an increase in the total number of mutation-carriers diagnosed each year. Overall, during the last decade, our laboratory identified a germline mutation in 44.7% of patients with a suspect hereditary PGL/PCC and in 8% of patients with an apparently sporadic PGL/PCC. During the past decade, the discoveries of new paraganglioma/pheochromocytoma susceptibility genes and the subsequent progress of molecular screening techniques have enabled us to diagnose a hereditary paraganglioma/pheochromocytoma in about 22% of patients tested in routine practice. This genetic testing is of major importance for the follow-up of affected patients and for the genetic counselling of their families.  相似文献   

7.
《Endocrine practice》2015,21(4):406-412
Objective: Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are neural crest cell tumors associated with catecholamine production and assessed by a metanephrine/methoxytyramine measurement. This review summarizes the genetics of these tumors.Methods: Case presentation, review of the relevant literature, and bullet point conclusions.Results: Genetic research over the past 10 years has led to a better understanding of the pathogenesis of these tumors, currently associated with 20 susceptibility genes (both somatic and germ-line mutations). Although most of these genes can be divided into two clusters (clusters 1 and 2), recent data suggest that all mutations converge on the hypoxia-inducible factor signaling pathway. Most of the susceptibility genes are well characterized and associated with specific clinical presentations, including biochemical phenotype, tumor location and behavior, as well as neoplasms or similar characteristics. Correct and early detection of hereditary PHEO/PGL is paramount, as early diagnosis leads to improved and focused treatment, along with better outcomes. However, missed or delayed diagnosis of hereditary PHEO/PGL forestalls proper treatment and results in multiple, recurrent, or metastatic tumors and avoidable complications in some patients.Conclusion: Early diagnosis allows prompt screening for potentially lethal cancers associated with specific gene mutations and makes genetic testing more readily available to first-degree and other relatives of an index patient. Thus, understanding the genetics of these tumors is an essential part of endocrinology.Abbreviations: HIF2A = hypoxia-inducible factor 2α MAX = Myc-associated factor X MEN2 = multiple endocrine neoplasia type 2 NF1 = neurofibromatosis type 1 PGL = paraganglioma PHEO = pheochromocytoma SDHAF2 = succinate dehydrogenase complex assemble factor 2 TMEM127 = transmembrane protein 127 VHL = von Hippel-Lindau  相似文献   

8.
Thirty per cent of the paragangliomas and pheochromocytomas reported are hereditary. Mutations in SDHB, SDHC, SDHD, and more recently SDHAF2 and TMEM127 genes have been described in these hereditary tumors. We looked for mutations in these 5 genes in a series of 269 patients with paragangliomas and/or pheochromocytomas. The SDHB, SDHC, and SDHD genes were analyzed in a series of 269 unrelated index patients with paragangliomas and/or pheochromocytomas using dHPLC screening of point mutations followed by direct sequencing and Multiplex PCR Liquid Chromatography to detect large rearrangements confirmed by quantitative PCR. In a second phase, we adapted Multiplex PCR Liquid Chromatography to the SDHAF2 and TMEM127 genes. This method and direct sequencing were applied to 230 patients without the SDHB, C, D mutations. Of the 269 patients, 44 carried a mutation (16.3%). Thirty-seven different mutations were identified: 18 in SDHB (including 2 large deletions), 8 in SDHD, 6 in SDHC, 5 in TMEM127, and no mutations in SDHAF2. Thirteen mutations have not been published so far. An exhaustive study of the different genes is needed to make possible a familial genetic diagnosis in paraganglioma and pheochromocytoma hereditary syndromes. Although mutations in SDHC and TMEM127 are less frequent than mutations in SDHB and SDHD, they also have less evident clinical feature indicators. Analyzing SDHAF2 must be restricted to familial extra-adrenal paragangliomas. Multiplex PCR Liquid Chromatography is a sensitive, fast, and inexpensive method for screening large rearrangements, which are infrequent in these syndromes.  相似文献   

9.
Paragangliomas (PGL) are relatively rare neural crest tumors originating in the adrenal medulla (usually called pheochromocytoma), chemoreceptors (i.e., carotid and aortic bodies) or autonomic ganglia. These tumors are highly vascular, usually benign and slow-growing. PGL may occur as sporadic or familial entities, the latter mostly in association with germline mutations of the succinate dehydrogenase (SDH) B, SDHC, SDHD, SDH5, von Hippel-Lindau (VHL), ret proto-oncogene (RET), neurofibromatosis 1 (NF1) (von Recklinghausen's disease), prolyl hydroxylase domain protein 2 (PHD2) genes and TMEM127. Molecular nuclear imaging has a central role in characterization of PGL and include: somatostatine receptor imaging (111In, 68Ga), MIBG scintigraphy (131I, 123I), 18F-dihydroxyphenylalanine (18F-DOPA) positron emission tomography (PET), and 18F-deoxyglucose (18F-FDG) PET. The choice of the tracer is not yet fully established but the work-up of familial forms often require the combination of multiple approaches.  相似文献   

10.
The pheochromocytomas are an important cause of secondary hypertension. Although pheochromocytoma susceptibility may be associated with germline mutations in the tumor-suppressor genes VHL and NF1 and in the proto-oncogene RET, the genetic basis for most cases of nonsyndromic familial pheochromocytoma is unknown. Recently, pheochromocytoma susceptibility has been associated with germline SDHD mutations. Germline SDHD mutations were originally described in hereditary paraganglioma, a dominantly inherited disorder characterized by vascular tumors in the head and the neck, most frequently at the carotid bifurcation. The gene products of two components of succinate dehydrogenase, SDHC and SDHD, anchor the gene products of two other components, SDHA and SDHB, which form the catalytic core, to the inner-mitochondrial membrane. Although mutations in SDHC and in SDHD may cause hereditary paraganglioma, germline SDHA mutations are associated with juvenile encephalopathy, and the phenotypic consequences of SDHB mutations have not been defined. To investigate the genetic causes of pheochromocytoma, we analyzed SDHB and SDHC, in familial and in sporadic cases. Inactivating SDHB mutations were detected in two of the five kindreds with familial pheochromocytoma, two of the three kindreds with pheochromocytoma and paraganglioma susceptibility, and 1 of the 24 cases of sporadic pheochromocytoma. These findings extend the link between mitochondrial dysfunction and tumorigenesis and suggest that germline SDHB mutations are an important cause of pheochromocytoma susceptibility.  相似文献   

11.
Recent advances in the molecular genetic of adrenal tumors give new insights in the pathophysiology of these neoplasms in both hereditary and sporadic cases. The practice of genetic counselling in patients with adrenal tumors have been recently changed by the identification and the understanding of new specific hereditary cancer susceptibility syndromes. In the case of sporadic adrenocortical tumors these progress also offer new prognosis predictors.The genetic predisposition to adrenocortical cancer in children has been well established in the Li-Fraumeni and Beckewith-Wiedeman syndromes due to germline p53 mutation located at 17p13 and dysregulation of the imprinted IGF-2 locus at 11p15, respectively. Adrenocortical tumors are also observed in Multiple Endocrine Neoplasia type I syndrome. Cushing's syndrome due to primary pigmented nodular adrenocortical disease have been observed in patients with germline PRKAR1A inactivating mutations. Interestingly allelic loss at 17p13 and 11p15 have been observed in sporadic adrenocortical cancer and somatic PRKAR1A mutations in secreting adrenocortical adenomas. The potential interest of these finding for the diagnosis of these tumors will be discussed. In the case of pheochromocytoma and paraganglioma, the demonstration that three genes encoding three succinate dehydrogenase subunits (SDHD, SDHB, SDHC), belonging to the complex II of the respiratory chain in the mitochondria, are involved in the genetics of familial and especially in apparently sporadic phaeochromocytomas have dramatically modified our practice. Up to date, four diagnosis of familal disease (multiple endocrine neoplasia type II, von Hippel Lindau disease, neurofibromatosis type 1 and hereditary paraganglioma) should be discussed and causative mutations in six different phaechomocytoma susceptibility genes (RET, VHL, NF1, SDHB, SDHD, SDHC) could be identified. In this review, we will perform an update compiling these new clinical, genetic and functional data recently published. We will suggest guidelines for the practice of the phaeochomocytoma genetic testing in the patients and their families, and for an early detection of tumors in the patients or in individuals determined to be at-risk of disease by the presymptomatic genetic testing.  相似文献   

12.
A glycolytic profile unifies a group of pheochromocytomas and paragangliomas (PHEOs/PGLs) with distinct underlying gene defects, including von Hippel-Lindau (VHL) and succinate dehydrogenase B (SDHB) mutations. Nevertheless, their tumor aggressiveness is distinct: PHEOs/PGLs metastasize rarely in VHL-, but frequently in SDHB-patients. To date, the molecular mechanisms causing the more aggressive phenotype in SDHB-PHEOs/PGLs remain largely unknown. Recently, however, an excellent model to study aggressive PHEOs (mouse tumor tissue (MTT) cells) has been developed from mouse PHEO cells (MPC). We employed this model for a proteomics based approach to identify changes characteristic for tumor aggressiveness, which we then explored in a homogeneous set of human SDHB- and VHL-PHEOs/PGLs. The increase of glucose transporter 1 in VHL, and of hexokinase 2 in VHL and SDHB, confirmed their glycolytic profile. In agreement with the cell model and in support of decoupling of glycolysis, the Krebs cycle and oxidative phosphorylation (OXPHOS), SDHB tumors showed increased lactate dehydrogenase levels. In SDHB-PGLs OXPHOS complex activity was increased at complex III and, as expected, decreased at complex II. Moreover, protein and mRNA expression of all tested OXPHOS-related genes were higher in SDHB- than in VHL-derived tumors. Although there was no direct evidence for increased reactive oxygen species production, elevated superoxide dismutase 2 expression may reflect elevated oxidative stress in SDHB-derived PHEOs/PGLs. For the first time, we show that despite dysfunction in complex II and evidence for a glycolytic phenotype, the Warburg effect does not seem to fully apply to SDHB-PHEOs/PGLs with respect to decreased OXPHOS. In addition, we present evidence for increased LDHA and SOD2 expression in SDHB-PHEOs/PGLs, proteins that have been proposed as promising therapeutic targets in other cancers. This study provides new insight into pathogenic mechanisms in aggressive human PHEOs/PGLs, which may lead to identifying new diagnostic and prognostic markers in the near future.  相似文献   

13.
14.
von Hippel–Lindau (VHL) disease is a hereditary tumor syndrome predisposing to multifocal bilateral renal cell carcinomas (RCCs), pheochromocytomas, and pancreatic tumors, as well as angiomas and hemangioblastomas of the CNS. A candidate gene for VHL was recently identified, which led to the isolation of a partial cDNA clone with extended open reading frame, without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and nonhereditary tumors, we performed mutation analyses and studied its expression in normal and tumor tissue. We identified germ-line mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs and all (6/6) sporadic RCC cell lines analyzed showed mutations within the VHL gene. Both germ-line and somatic mutations included deletions, insertions, splice-site mutations, and missense and nonsense mutations, all of which clustered at the 3' end of the corresponding partial VHL cDNA open reading frame, including an alternatively spliced exon 123 nt in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic RCCs, acts as a recessive tumor-suppressor gene, and appears to encode important functional domains within the 3' end of the known open reading frame.  相似文献   

15.
The Warburg effect describes how cancer cells down-regulate their aerobic respiration and preferentially use glycolysis to generate energy. To evaluate the link between hypoxia and Warburg effect, we studied mitochondrial electron transport, angiogenesis and glycolysis in pheochromocytomas induced by germ-line mutations in VHL, RET, NF1 and SDH genes. SDH and VHL gene mutations have been shown to lead to the activation of hypoxic response, even in normoxic conditions, a process now referred to as pseudohypoxia. We observed a decrease in electron transport protein expression and activity, associated with increased angiogenesis in SDH- and VHL-related, pseudohypoxic tumors, while stimulation of glycolysis was solely observed in VHL tumors. Moreover, microarray analyses revealed that expression of genes involved in these metabolic pathways is an efficient tool for classification of pheochromocytomas in accordance with the predisposition gene mutated. Our data suggest an unexpected association between pseudohypoxia and loss of p53, which leads to a distinct Warburg effect in VHL-related pheochromocytomas.  相似文献   

16.
Multiple endocrine neoplasia type 2a results from an activating germline mutation in the RET proto-oncogene. Carriers of a RET mutation are at risk of medullary thyroid carcinoma, pheochromocytoma, and primary hyperparathyroidism. Most individuals with multiple endocrine neoplasia type 2a eventually develop medullary thyroid carcinoma and as there is a strong genotype-phenotype correlation, guidelines have been established as to the age recommended for prophylactic thyroidectomy. However for rare mutations in the RET proto-oncogene there is insufficient evidence to provide guidance as to the risk of medullary thyroid carcinoma. We present a family with the rare RET mutation, D631Y in which the proband initially presented with a pheochromocytoma, and review the available literature pertaining to this mutation. In 83% of index cases, pheochromocytoma was the presenting feature and only 37% of adult germline mutation carriers have developed medullary thyroid carcinoma, none of whom have been reported to have nodal or metastatic disease. Patients with a D631Y RET mutation typically present with pheochromocytoma and medullary thyroid carcinoma appears to occur with a later onset than reported with other RET mutations. Based on the current literature we recommend performing prophylactic total thyroidectomy by age 12 years for D631Y carriers although this recommendation may need to be reviewed as additional data becomes available.  相似文献   

17.
In order to evaluate the sensitivity and specificity of the recently introduced high-throughput method DHPLC (denaturing high performance liquid chromatography) for mutation screening in the VHL tumor suppressor gene, we subjected DNA from 43 unrelated VHL patients with previously sequenced VHL germline mutations to this method. In addition, 36 genomic DNAs of unrelated individuals suspected of being VHL carriers but with unknown germline status were analyzed by DHPLC and sequencing. The aims of the present study were to compare mutation results obtained by direct sequencing and DHPLC, and a comparison of two different DHPLC systems. The sensitivity of DHPLC was tested with two commercial devices and protocols, i.e., the Varian-Helix system and the Wave Nucleic Acid Fragment Analysis system. Both resolved all but one mutation in exons 2 and 3 of the VHL gene. In contrast, the GC-rich exon 1 showed discrepancies in the rate of mutation detection. Whereas the Varian-Helix system detected 10/15 (67%) of the known mutations, the Wave Nucleic Acid Fragment Analysis system detected 13/14 (93%). All three mutations in samples with unknown mutation status were revealed by both systems raising the mutation detection rate to 72% and 94%, respectively. Cases with different substitutions at the same nucleotide showed different elution profiles, but similar elution profiles could be obtained from different mutations. The Wave Nucleic Acid Fragment Analysis system detected most VHL mutations; however, when a 100% detection rate is needed, sequencing is still required and must therefore be the standard VHL mutation detection procedure. Once a family-specific mutation has been established, DHPLC may be suitable for the rapid and cost-effective determination of VHL carrier status in family members.  相似文献   

18.
In animal models, kidney formation is known to be controlled by the proteins RET, GDNF, and GFRA1; however, no human studies to date have shown an association between abnormal kidney development and mutation of these genes. We hypothesized that stillborn fetuses with congenital renal agenesis or severe dysplasia would possess mutations in RET, GDNF, or GFRA1. We assayed for mutations in these genes in 33 stillborn fetuses that had bilateral or unilateral renal agenesis (29 subjects) or severe congenital renal dysplasia (4 subjects). Mutations in RET were found in 7 of 19 fetuses with bilateral renal agenesis (37%) and 2 of 10 fetuses (20%) with unilateral agenesis. In two fetuses, there were two different RET mutations found, and a total of ten different sequence variations were identified. We also investigated whether these mutations affected RET activation; in each case, RET phosphorylation was either absent or constitutively activated. A GNDF mutation was identified in only one fetus with unilateral agenesis; this subject also had two RET mutations. No GFRA1 mutations were seen in any fetuses. These data suggest that in humans, mutations in RET and GDNF may contribute significantly to abnormal kidney development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号