首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central dopamine systems are involved in several aspects of normal brain function and are implicated in a number of human disorders. Hence, it is important to understand the mechanisms that control dopamine release in the brain. The striatum of the rat receives both dopaminergic and glutamatergic projections that synaptically target striatal neurons but not each other. Nevertheless, these afferents do form frequent appositional contacts, which has engendered interest in the question of whether they communicate with each other despite the absence of a direct synaptic connection. In this study, we used voltammetry in conjunction with carbon fiber microelectrodes in anesthetized rats to further examine the effect of the ionotropic glutamate antagonist, kynurenate, on extracellular dopamine levels in the striatum. Intrastriatal infusions of kynurenate decreased extracellular dopamine levels, suggesting that glutamate acts locally within the striatum via ionotropic receptors to regulate the basal extracellular dopamine concentration. Infusion of tetrodotoxin into the medial forebrain bundle or the striatum did not alter the voltammetric response to the intrastriatal kynurenate infusions, suggesting that glutamate receptors control a non-vesicular release process that contributes to the basal extracellular dopamine level. However, systemic administration of the dopamine uptake inhibitor, nomifensine (20 mg/kg i.p.), markedly decreased the amplitude of the response to kynurenate infusions, suggesting that the dopamine transporter mediates non-vesicular dopamine release. Collectively, these findings are consistent with the idea that endogenous glutamate acts locally within the striatum via ionotropic receptors to control a tonic, impulse-independent, transporter-mediated mode of dopamine release. Although numerous prior in vitro studies had suggested that such a process might exist, it has not previously been clearly demonstrated in an in vivo experiment.  相似文献   

2.
While in vivo electrochemistry has been shown to be useful for discovering new neurophysiological phenomena, there is still considerable controversy about the identity of the compounds being measured and the concentration of those compounds in extracellular fluid in brain. We have found that carbon paste electrodes undergo changes in sensitivity and specificity for dopamine and other compounds after being implanted in brain. We have also examined the effect of ascorbate on the selective enhancement of catecholamine peaks to provide an explanation for the apparently very high concentrations of dopamine measured in the extracellular fluid space. After temporary brain implantation (20 min), carbon paste electrodes tested in vitro showed increased sensitivity and lower oxidation potentials for dopamine, norepinephrine and serotonin. These brain-treated electrodes also detected 3,4-dihydroxyphenylacetic acid (DOPAC) as a distinct peak at +0.16 V, although the electrode sensitivity for DOPAC was some 25 times lower than that for dopamine. Brain treatment did not alter electrode sensitivity or oxidation potential for 5-HIAA. The oxidation current for ascorbic acid when processed as the semiderivative showed no distinct peak in the potential range -0.2 to +0.4V for either untreated or brain-treated electrodes. However ascorbic acid amplified the electrochemical peaks of catechols in direct proportion to the ratio of the concentration of ascorbate to the concentration of the catechol. In the physiologic concentration range of 300 microM ascorbate, the electrochemical signal for 1 microM dopamine was amplified 4250%. While ascorbate amplification improves detectability of dopamine and norepinephrine, it also introduces ambiguity since changing catechol concentrations cannot be distinguished from changing ascorbate concentrations.  相似文献   

3.
Manganese neurotoxicity and glutamate-GABA interaction   总被引:10,自引:0,他引:10  
Brain extracellular concentrations of amino acids (e.g. aspartate, glutamate, taurine) and divalent metals (e.g. zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis is essential for the normal functioning of the central nervous system (CNS). Glutamate is of central importance for nitrogen metabolism and, along with aspartate, is the primary mediator of the excitatory pathways in the brain. Similarly, the maintenance of proper manganese levels is important for normal brain functioning. Several in vivo and in vitro studies have linked increased manganese concentrations with alterations in the content and metabolism of neurotransmitters, namely dopamine, gamma-aminobutyric acid, and glutamate. It has been reported by our laboratory and others, that cultured rat primary astrocytes exposed to manganese displayed decreased glutamate uptake, thereby increasing the excitotoxic potential of glutamate. Furthermore, decreased uptake of glutamate has been associated with decreased gene expression of glutamate:aspartate transporter (GLAST) in manganese-exposed astroctyes. Additional studies have suggested that attenuation of astrocytic glutamate uptake by manganese may be a consequence of reactive oxygen species (ROS) generation. Collectively, these data suggest that excitotoxicity may occur due to manganese-induced altered glutamate metabolism, representing a proximate mechanism for manganese-induced neurotoxicity.  相似文献   

4.
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.  相似文献   

5.
Schlicker E  Morari M 《Peptides》2000,21(7):1023-1029
In this article, the effect of nociceptin (orphanin FQ) on transmitter release in the central nervous system in vitro and in vivo is reviewed. Nociceptin inhibits the electrically or K(+)-evoked noradrenaline, dopamine, serotonin, and glutamate release in brain slices from guinea-pig, rat, and mouse. This effect is usually naloxone-resistant but antagonized by OP(4) receptor antagonists like [Phe(1)psi(CH(2)-NH)Gly(2)]-nociceptin(1-13)NH(2). In the rat in vivo, nociceptin diminishes acetylcholine release in the striatum, reduces dopamine release, and prevents the stimulatory effect of morphine on this transmitter in the nucleus accumbens and also elevates extracellular glutamate and gamma-aminobutyric acid levels in mesencephalic dopaminergic areas. The effect of nociceptin on the mesencephalic dopaminergic system might explain its actions on motor behavior.  相似文献   

6.
In vivo microdialysis and behavioural studies in the domestic chick have shown that glutamatergic as well as monoaminergic neurotransmission in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) is altered after auditory filial imprinting. In the present study, using pharmaco-behavioural and in vivo microdialysis approaches, the role of dopaminergic neurotransmission in this juvenile learning event was further evaluated. The results revealed that: (i) the systemic application of the potent dopamine receptor antagonist haloperidol (7.5 mg/kg) strongly impairs auditory filial imprinting; (ii) systemic haloperidol induces a tetrodotoxin-sensitive increase of extracellular levels of the dopamine metabolite, homovanillic acid, in the MNH, whereas the levels of glutamate, taurine and the serotonin metabolite, 5-hydroxyindole-3-acetic acid, remain unchanged; (iii) haloperidol (0.01, 0.1, 1 mm) infused locally into the MNH increases glutamate, taurine and 5- hydroxyindole-3-acetic acid levels in a dose-dependent manner, whereas homovanillic acid levels remain unchanged; (iv) systemic haloperidol infusion reinforces the N-methyl-d-aspartate receptor-mediated inhibitory modulation of the dopaminergic neurotransmission within the MNH. These results indicate that the modulation of dopaminergic function and its interaction with other neurotransmitter systems in a higher associative forebrain region of the juvenile avian brain displays similar neurochemical characteristics as the adult mammalian prefrontal cortex. Furthermore, we were able to show that the pharmacological manipulation of monoaminergic regulatory mechanisms interferes with learning and memory formation, events which in a similar fashion might occur in young or adult mammals.  相似文献   

7.
Brain microdialysis has become a frequently used method to study the extracellular concentrations of neurotransmitters in specific areas of the brain. For years, and this is still the case today, dialysate concentrations and hence extracellular concentrations of neurotransmitters have been interpreted as a direct index of the neuronal release of these specific neurotransmitter systems. Although this seems to be the case for neurotransmitters such as dopamine, serotonin and acetylcholine, the extracellular concentrations of glutamate and GABA do not provide a reliable index of their synaptic exocytotic release. However, many microdialysis studies show changes in extracellular concentrations of glutamate and GABA under specific pharmacological and behavioural stimuli that could be interpreted as a consequence of the activation of specific neurochemical circuits. Despite this, we still do not know the origin and physiological significance of these changes of glutamate and GABA in the extracellular space. Here we propose that the changes in dialysate concentrations of these two neurotransmitters found under specific treatments could be an expression of the activity of the neurone-astrocyte unit in specific circuits of the brain. It is further proposed that dialysate changes of glutamate and GABA could be used as an index of volume transmission mediated actions of these two neurotransmitters in the brain. This hypothesis is based firstly on the assumption that the activity of neurones is functionally linked to the activity of astrocytes, which can release glutamate and GABA to the extracellular space; secondly, on the existence of extrasynaptic glutamate and GABA receptors with functional properties different from those of GABA receptors located at the synapse; and thirdly, on the experimental evidence reporting specific electrophysiological and neurochemical effects of glutamate and GABA when their levels are increased in the extracellular space. According to this concept, glutamate and GABA, once released into the extracellular compartment, could diffuse and have long-lasting effects modulating glutamatergic and/or GABAergic neurone-astrocytic networks and their interactions with other neurotransmitter neurone networks in the same areas of the brain.  相似文献   

8.
The present study investigated the effects of N-methyl-D-aspartic acid.H2O (NMDA) on the dopamine, glutamate and GABA release in the subthalamic nucleus (STN) by using in vivo microdialysis in rats. NMDA (100 micromol/L) perfused through the microdialysis probe evoked an increase in extracellular dopamine in the STN of the intact rat of about 170%. This coincided with significant increases in both extracellular glutamate (350%) and GABA (250%). The effect of NMDA perfusion on neurotransmitter release at the level of the STN was completely abolished by co-perfusion of the selective NMDA-receptor antagonist MK-801 (10 micromol/L), whereas subthalamic perfusion of MK-801 alone had no effect on extracellular neurotransmitter concentrations. Furthermore, NMDA induced increases in glutamate were abolished by both SCH23390 (8 micromol/L), a selective D1 antagonist, and remoxipride (4 micromol/L), a selective D2 antagonist. The NMDA induced increase in GABA was abolished by remoxipride but not by SCH23390. Perfusion of the STN with SCH23390 or remoxipride alone had no effect on extracellular neurotransmitter concentrations. The observed effects in intact animals depend on the nigral dopaminergic innervation, as dopamine denervation, by means of 6-hydroxydopamine lesioning of the substantia nigra, clearly abolished the effects of NMDA on neurotransmitter release at the level of the STN. Our work points to a complex interaction between dopamine, glutamate and GABA with a crucial role for dopamine at the level of the STN.  相似文献   

9.
Abstract: High doses of methamphetamine (METH) produce a long-term depletion in striatal tissue dopamine content. The mechanism mediating this toxicity has been associated with increased concentrations of dopamine and glutamate and altered energy metabolism. In vivo microdialysis was used to assess and alter the metabolic environment of the brain during high doses of METH. METH significantly increased extracellular concentrations of lactate in striatum and prefrontal cortex. This increase was significantly greater in striatum and coincided with the greater vulnerability of this brain region to the toxic effects of METH. To examine the effect of supplementing energy metabolism on METH-induced dopamine content depletions, the striatum was perfused directly with decylubiquinone or nicotinamide to enhance the energetic capacity of the tissue during or after a neurotoxic dosing regimen of METH. When decylubiquinone or nicotinamide was perfused into striatum during the administration of METH, there was no significant effect on METH-induced striatal dopamine efflux, glutamate efflux, or the long-term dopamine depletions measured 7 days later. However, a delayed perfusion with decylubiquinone or nicotinamide for 6 h beginning immediately after the last METH injection attenuated the METH-induced striatal dopamine depletions measured 1 week later. These results support the hypothesis that the compromised metabolic state produced by METH administration predisposes dopamine terminals to the neurotoxic effects of glutamate, dopamine, and/or free radicals.  相似文献   

10.
Glutamate is implicated in neuronal cell death. Exogenously applied DOPA by itself releases neuronal glutamate and causes neuronal cell death in in vitro striatal systems. Herein, we attempt to clarify whether endogenous DOPA is released by 10 min transient ischemia due to four-vessel occlusion during rat striatal microdialysis and, further, whether DOPA, when released, functions to cause glutamate release and resultant delayed neuronal cell death. Ischemia increased extracellular DOPA, dopamine, and glutamate, and elicited neuronal cell death 96 h after ischemic insult. Inhibition of striatal L-aromatic amino acid decarboxylase 10 min before ischemia increased markedly basal DOPA, tripled glutamate release with a tendency of decrease in dopamine release by ischemia, and exaggerated neuronal cell death. Intrastriatal perfusion of 10-30 nM DOPA cyclohexyl ester, a competitive DOPA antagonist, 10 min before ischemia, concentration-dependently decreased glutamate release without modification of dopamine release by ischemia. At 100 nM, the antagonist elicited a slight ceiling effect on decreases in glutamate release by ischemia and protected neurons from cell death. Glutamate was released concentration-dependently by intrastriatal perfusion of 0.3-1 mM DOPA and stereoselectively by 0.6 mM DOPA. The antagonist elicited no hypothermia during and after ischemia. Endogenously released DOPA is an upstream causal factor for glutamate release and resultant delayed neuronal cell death by brain ischemia in rat striata. DOPA antagonist has a neuroprotective action.  相似文献   

11.
The purpose of this review is to describe the relationship between the dopamine and amino acid neurotransmitter systems and cortical oxygen pressure during different levels of cerebral hypoxia using newborn piglets as an animal model, adding new data from our laboratory. The extracellular dopamine increases as the oxygen pressure in the cortex decreases. The relationship between oxygen pressure and dopamine levels is the same whether the hypoxia is induced by reduced FiO2 (high-flow hypoxia) or by hypocapnia-induced cerebral vasoconstriction (low-flow hypoxia). Thus it appears that, particularly in mild hypoxia, the extracellular level of dopamine depends primarily on the oxygen concentration in the tissue with minimal influence of parameters such as blood flow and pH. There is no "oxygen reserve" in the brain of newborn piglets and the extracellular levels of dopamine in the striatum increase almost linearly with decrease in oxygen pressure, with even small decreases in oxygen pressure resulting in increased dopamine levels. In contrast, the changes in extracellular concentrations of the excitatory amino acids glutamate and aspartate are variable and transient. In a majority of 2- to 5 day-old piglets even very low oxygen pressures in the brain did not result in significant alterations in the extracellular levels of glutamate and aspartate. These changes in the dopaminergic system may contribute directly and indirectly to the neuronal damage that occurs during hypoxic/ischemic insult and reoxygenation in newborn brain, particularly in the striatum. A variety of mechanisms are discussed by which dopamine, in particular extracellular dopamine, can increase cellular toxicity.  相似文献   

12.
Glial fibrillary acidic protein (GFAP) is an enigmatic protein; it currently has no unambiguously defined role. It is expressed in the cytoskeleton of astrocytes in the mammalian brain. We have used co-immunoprecipitation to identify in vivo binding partners for GFAP in the rat and pig brain. We demonstrate interactions between GFAP, the glutamate transporter GLAST, the PDZ-binding protein NHERF1, and ezrin. These interactions are physiologically relevant; we demonstrate in vitro that transport of D-aspartate (a glutamate analogue) is significantly increased in the presence of GFAP and NHERF1. Moreover, we demonstrate in vivo that expression of GFAP is essential in retaining GLAST in the plasma membranes of astrocytes after an hypoxic insult. These data indicate that the cytoskeleton of the astrocyte plays an important role in protecting the brain against glutamate-mediated excitotoxicity.  相似文献   

13.
The first faradiac peak in the voltammogram at +0.12 volts vs an Ag/AgCl reference recorded using a carbon paste working electrode results primarily from the oxidation of extracellular ascorbic acid (AA) with lesser contributions from dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC). The rise in this peak following DA agonist treatment cannot be explained by changes in DA or DOPAC levels since these would be expected to decrease. We carried out brain dialysis and in vivo voltammetry studies in parallel to determine the identity of the substances released into the striatal extracellular fluid by the DA agonist, pergolide, and the dopamine releaser, d-amphetamine.  相似文献   

14.
Abstract: It has been hypothesized that excitatory amino acids can initiate dopamine release in neostriatum. We examined whether the increase in extracellular dopamine in neostriatum produced by acute stress reflects presynaptic initiation of dopamine release by endogenous excitatory amino acids. Thirty minutes of intermittent tail-shock stress significantly elevated extracellular concentrations of dopamine, glutamate, aspartate, and γ-aminobutyric acid in neostriatum of freely moving rats as measured with in vivo microdialysis. Local infusion of the N -methyl- d -aspartate receptor antagonist 2-amino-5-phosphonovaler-ate or the non- N -methyl- d -aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione via the dialysis probe did not attenuate the stress-induced increase in extra cellular dopamine. In fact, the increase was prolonged in rats treated with specific excitatory amino acid receptor antagonists. Infusion of tetrodotoxin into medial forebrain bundle increased extra cellular glutamate and aspartate in neostriatum yet reduced basal dopamine in extra cellular fluid to below the limit of detection of the assay and eliminated the stress-induced increase in extra cellular dopamine. These findings fail to support the hypothesis that the stress-induced increase in extra cellular dopamine in neostriatum is initiated locally by excitatory amino acids. Rather, the effects of stress on extra cellular dopamine seem to be determined by impulse propagation in dopamine neurons.  相似文献   

15.
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy.  相似文献   

16.
Profound insulin-induced hypoglycemia is associated with early-onset neuronal damage that resembles excitotoxic lesions and is attenuated in severity by antagonists of N-methyl-D-aspartate receptors. Hypoglycemia increases L-tryptophan concentrations in brain and could increase the concentration of the L-tryptophan metabolite quinolinic acid (QUIN), an agonist of N-methyl-D-aspartate receptors and an excitotoxin in brain. Therefore, we investigated the effects of 40 min of profound hypoglycemia (isoelectric EEG) and 1-2 h of normoglycemic recovery on the concentrations of QUIN in brain tissue, brain extracellular fluid, and plasma in male Wistar rats. Plasma QUIN increased 6.5-fold by the time of isoelectricity (2 h after insulin administration). Regional brain QUIN concentrations increased two- to threefold during hypoglycemia and increased a further two- to threefold during recovery. However, no change in extracellular fluid QUIN concentrations in hippocampus occurred during hypoglycemia or recovery as measured using in vivo microdialysis. Therefore, the increases in brain tissue QUIN concentrations may reflect elevations of QUIN in the intracellular space or be secondary to the increases in QUIN in the vascular compartment in brain per se. L-Tryptophan concentrations increased more than twofold during recovery only. Serotonin decreased greater than 50% throughout the brain during hypoglycemia, while 5-hydroxyindoleacetic acid concentrations increased more than twofold during hypoglycemia and recovery. In striatum, dopamine was decreased 75% during hypoglycemia but returned to control values during recovery, while striatal 3,4-dihydroxyphenylacetic acid and homovanillic acid were increased more than twofold during both hypoglycemia and recovery.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In vivo electrochemistry has been a valuable tool in detecting real time neurochemical changes in extracellular fluid. Absolute selectivity has been difficult to achieve previously, but we report here a carbon fiber electrode and measurement technique which is specific for one oxidizable species: ascorbic acid. Ascorbic acid is highly concentrated in extra- as well as intracellular brain spaces, and appears to undergo dynamic changes in response to a variety of physiological and pathophysiological circumstances. Recent studies have implicated glutamatergic mechanisms which give rise to extracellular changes in brain ascorbate, and we confirm and extend these observations. Preliminary studies, directed towards examining ascorbic acid as an index and/or result of hypoxia, spreading depression, and seizure activity, have been undertaken and the results are reported herein.Special issue dedicated to Dr. Frederick E. Samson.  相似文献   

18.
Systemic administration of direct and indirect dopamine agonists resulted in increased extracellular ascorbic acid levels in the striatum and, to a lesser degree, in the nucleus accumbens as measured by in vivo voltammetry. Intraperitoneal d-amphetamine sulfate (5mg/kg) increased ascorbate concentrations in striatal extracellular fluid. Amphetamine also increased extracellular ascorbate levels in the nucleus accumbens although more gradually and to a lesser extent. Intraperitoneal phenethylamine hydrochloride (20 mg/kg) following pargyline hydrochloride pretreatment (20 mg/kg) increased extracellular ascorbate levels in the striatum significantly above the small increase seen in the nucleus accumbens. The direct acting dopamine agonists Ly-141865 and Ly-163502 when given i.p. at 1 mg/kg, resulted in increased extracellular ascorbate concentrations in both brain areas, again with a significantly greater effect in the striatum. These results indicate that brain extracellular ascorbate levels can be modulated by dopaminergic neuro-transmission and that this modulation is quantitatively different in different dopamine-containing brain structures.  相似文献   

19.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

20.
An isocratic high-performance liquid chromatographic technique was developed to measure levels of gamma-aminobutyric acid (GABA), glutamate, and taurine in the brain and pituitary of goldfish. Accuracy of this procedure for quantification of these compounds was established by evaluating anesthetic and postmortem effects and by selectively manipulating GABA concentrations by intraperitoneal administration of the glutamic acid decarboxylase (GAD) inhibitor 3-mercaptopropionic acid or the GABA transaminase inhibitor gamma-vinyl GABA. The technique provided a simple, rapid, and reliable method for evaluating the concentrations of these amino acids without the use of complex gradient chromatographic systems. To investigate the relationship between neurotransmitter amino acids and the control of pituitary secretion of gonadotropin, the effects of injection of taurine, GABA, or monosodium glutamate on GABA, glutamate, taurine, and, in some instances, monoamine concentrations in the brain and pituitary were evaluated and related to serum gonadotropin levels. Injection of taurine caused an elevation in serum gonadotropin concentrations. In addition, injection of the taurine precursor hypotaurine but not the taurine catabolite isethionic acid elevated serum gonadotropin levels. Intracerebroventricular injection of either GABA or taurine also elevated serum gonadotropin concentrations. Pretreatment of recrudescent fish with alpha-methyl-p-tyrosine reduced pituitary dopamine concentrations and also potentiated the serum gonadotropin response to taurine. Injection of monosodium glutamate caused an increase of glutamate content in the pituitary at 24 h; this was followed by a decrease at 72 h after administration. Pituitary GABA, taurine, and dopamine concentrations underwent a transient depletion after monosodium glutamate administration, and this was associated with an elevation of serum gonadotropin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号