首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the merozoite surface of Plasmodium falciparum, is recognized to be important for the parasite’s invasion into the host cell and is thus a promising malaria vaccine candidate. However, mediated mainly by its conserved N-terminal 25 residues (MSP21–25), MSP2 readily forms amyloid fibril-like aggregates under physiological conditions in vitro, which impairs its potential as a vaccine component. In addition, there is evidence that MSP2 exists in aggregated forms on the merozoite surface in vivo. To elucidate the aggregation mechanism of MSP21–25 and thereby understand the behavior of MSP2 in vivo and find ways to avoid the aggregation of relevant vaccine in vitro, we investigated the effects of agitation, pH, salts, 1-anilinonaphthalene-8-sulfonic acid (ANS), trimethylamine N-oxide dihydrate (TMAO), urea, and sub-micellar sodium dodecyl sulfate (SDS) on the aggregation kinetics of MSP21–25 using thioflavin T (ThT) fluorescence. The results showed that MSP21–25 aggregation was accelerated by agitation, while repressed by acidic pHs. The salts promoted the aggregation in an anion nature-dependent pattern. Hydrophobic surface-binding agent ANS and detergent urea repressed MSP21–25 aggregation, in contrast to hydrophobic interaction strengthener TMAO, which enhanced the aggregation. Notably, sub-micellar SDS, contrary to its micellar form, promoted MSP21–25 aggregation significantly. Our data indicated that hydrophobic interactions are the predominant driving force of the nucleation of MSP21–25 aggregation, while the elongation is controlled mainly by electrostatic interactions. A kinetic model of MSP21–25 aggregation and its implication were also discussed.  相似文献   

2.
The codon composition of the coding sequence''s (ORF) 5′ end first few dozen codons is known to be distinct to that of the rest of the ORF. Various explanations for the unusual codon distribution in this region have been proposed in recent years, and include, among others, novel regulatory mechanisms of translation initiation and elongation. However, due to the fact that many overlapping regulatory signals are suggested to be associated with this relatively short region, its research is challenging. Here, we review the currently known signals that appear in this region, the theories related to the way they regulate translation and affect the organismal fitness, and the debates they provoke.  相似文献   

3.
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.  相似文献   

4.
The hair follicle (HF) is an important mini-organ of the skin, composed of many types of cells. Dermal papilla cells are important signalling components that guide the proliferation, upward migration and differentiation of HF stem cell progenitor cells to form other types of HF cells. Thymosin β4 (Tβ4), a major actin-sequestering protein, is involved in various cellular responses and has recently been shown to play key roles in HF growth and development. Endogenous Tβ4 can activate the mouse HF cycle transition and affect HF growth and development by promoting the migration and differentiation of HF stem cells and their progeny. In addition, exogenous Tβ4 increases the rate of hair growth in mice and promotes cashmere production by increasing the number of secondary HFs (hair follicles) in cashmere goats. However, the molecular mechanisms through which Tβ4 promotes HF growth and development have rarely been reported. Herein, we review the functions and mechanisms of Tβ4 in HF growth and development and describe the endogenous and exogenous actions of Tβ4 in HFs to provide insights into the roles of Tβ4 in HF growth and development.  相似文献   

5.
6.

Background and aims

Soil aggregation is a crucial aspect of ecosystem functioning in terrestrial ecosystems. Arbuscular mycorrhizal fungi (AMF) play a key role in soil aggregate formation and stabilization. Here we quantitatively analyzed the importance of experimental settings as well as biotic and abiotic factors for the effectiveness of AMF to stabilize soil macroaggregates.

Methods

We gathered 35 studies on AMF and soil aggregation and tested 13 predictor variables for their relevance with a boosted regression tree analysis and performed a meta-analysis, fitting individual random effects models for each variable.

Results and conclusions

The overall mean effect of inoculation with AMF on soil aggregation was positive and predictor variable means were all in the range of beneficial effects. Pot studies and studies with sterilized sandy soil, near neutral soil pH, a pot size smaller than 2.5 kg and a duration between 2.2 and 5 months were more likely to result in stronger effects of AMF on soil aggregation than experiments in the field, with non-sterilized or fine textured soil or an acidic pH. This is the first study to quantitatively show that the effect of AMF inoculation on soil aggregation is positive and context dependent. Our findings can help to improve the use of this important ecosystem process, e.g. for inoculum application in restoration sites.  相似文献   

7.
8.
《朊病毒》2013,7(6):412-419
ABSTRACT

Prions cause neurodegenerative diseases for which no cure exists. Despite decades of research activities the function of the prion protein (PrP) in mammalians is not known. Moreover, little is known on the molecular mechanisms of the self-assembly of the PrP from its monomeric state (cellular PrP, PrPC) to the multimeric state. The latter state includes the toxic species (scrapie PrP, PrPSc) knowledge of which would facilitate the development of drugs against prion diseases. Here we analyze the role of a tyrosine residue (Y169) which is strictly conserved in mammalian PrPs. Nuclear magnetic resonance (NMR) spectroscopy studies of many mammalian PrPC proteins have provided evidence of a conformational equilibrium between a 310-helical turn and a type I β turn conformation in the β2-α2 loop (residues 165–175). In vitro cell-free experiments of the seeded conversion of PrPC indicate that non-aromatic residues at position 169 reduce the formation of proteinase K-resistant PrP. Recent molecular dynamics (MD) simulations of monomeric PrP and several single-point mutants show that Y169 stabilizes the 310-helical turn conformation more than single-point mutants at position 169 or residues in contact with it. In the 310-helical turn conformation the hydrophobic and aggregation-prone segment 169-YSNQNNF-175 is buried and thus not-available for self-assembly. From the combined analysis of simulation and experimental results it emerges that Y169 is an aggregation gatekeeper with a twofold role. Mutations related to 3 human prion diseases are interpreted on the basis of the gatekeeper role in the monomeric state. Another potential role of the Y169 side chain is the stabilization of the ordered aggregates, i.e., reduction of frangibility of filamentous protofibrils and fibrils, which is likely to reduce the generation of toxic species.  相似文献   

9.
Epithelial sodium channels (ENaC) are critically important in the regulation of ion and fluid balance in both renal and respiratory epithelia. ENaC functional polymorphisms may contribute to alterations in blood pressure in the general population. We previously reported that the A663T polymorphism in the C terminus of the α-subunit altered ENaC functional and surface expression in Xenopus laevis oocytes (Samaha FF, Rubenstein RC, Yan W, Ramkumar M, Levy DI, Ahn YJ, Sheng S, Kleyman TR. J Biol Chem 279: 23900-23907, 2004). We examined whether sites in the vicinity of 663 influenced channel activity by performing scanning Ala mutagenesis. Interestingly, only αT663/G667Aβγ channels exhibited increased currents compared with αT663βγ. This increase in channel activity reflected an increase in channel open probability and not an increase in channel surface expression. In contrast, decreases in channel activity were observed with both αT663/C664Aβγ and αT663/C664Mβγ channels. The decrease in functional expression of αT663/C664Mβγ channels correlated with decreased surface expression, suggesting that the αC664M mutation altered the intracellular trafficking of the channel. While cytoplasmic Cys residues may be modified by the addition of palmitate, we did not observe palmitoylation of αC664. Our results suggest that multiple residues in the distal part of the cytoplasmic C terminus have roles in modulating channel activity.  相似文献   

10.
11.
A method for the synthesis and high purification of fragments of Aβ(1-42) peptide has been elaborated. We have synthesized the amyloidogenic fragment Aβ(16-25) predicted by us and studied the process of its aggregation by electron microscopy and X-ray analysis. Electron microscopy images show that the peptide forms a film, which is not characteristic of amyloid fibrils. At the same time, according to the X-ray diffraction data, its preparations display the presence of two main reflections (4.6-4.8 and 8-12 Å) characteristic of cross-β structure of amyloid fibrils. Thus, the fragment Aβ(16-25) that we predicted is a promising object not only for studying the process of polymerization of the peptides/proteins, but also for using it as a nanomaterial to study a number of biological processes.  相似文献   

12.
13.
Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with (oligodendro-)glial cytoplasmic α-synuclein (α-syn) inclusions (GCIs). Peripheral neuropathies have been reported in up to 40% of MSA patients, the cause remaining unclear. In a transgenic MSA mouse model featuring GCI-like inclusion pathology based on PLP-promoter driven overexpression of human α-syn in oligodendroglia motor and non-motor deficits are associated with MSA-like neurodegeneration. Since α-syn is also expressed in Schwann cells we aimed to investigate whether peripheral nerves are anatomically and functionally affected in the PLP-α-syn MSA mouse model.

Results

To this end, heat/cold as well as mechanical sensitivity tests were performed. Furthermore, in vivo and ex vivo nerve conduction and the G-ratios of the sciatic nerve were analyzed, and thermosensitive ion channel mRNA expression in dorsal root ganglia (DRG) was assessed. The presence of human α-syn in Schwann cells was associated with subtle behavioral impairments. The G-ratio of the sciatic nerve, the conduction velocity of myelinated and unmyelinated primary afferents and the expression of thermosensitive ion channels in the sensory neurons, however, were similar to wildtype mice.

Conclusion

Our results suggest that the PNS appears to be affected by Schwann cell α-syn deposits in the PLP-α-syn MSA mouse model. However, there was no consistent evidence for functional PNS perturbations resulting from such α-syn aggregates suggesting a more central cause of the observed behavioral abnormalities. Nonetheless, our results do not exclude a causal role of α-syn in the pathogenesis of MSA associated peripheral neuropathy.  相似文献   

14.
Several neurodegenerative disorders are characterized by the accumulation of proteinaceous inclusions in the central nervous system. These inclusions are frequently composed of a mixture of aggregation-prone proteins. Here, we used a bimolecular fluorescence complementation assay to study the initial steps of the co-aggregation of huntingtin (Htt) and α-synuclein (α-syn), two aggregation-prone proteins involved in Huntington's disease (HD) and Parkinson's disease (PD), respectively. We found that Htt (exon 1) oligomerized with α-syn and sequestered it in the cytosol. In turn, α-syn increased the number of cells displaying aggregates, decreased the number of aggregates per cell and increased the average size of the aggregates. Our results support the idea that co-aggregation of aggregation-prone proteins can contribute to the histopathology of neurodegenerative disorders.  相似文献   

15.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

16.
The aggregation of α-synuclein is associated with progression of Parkinson's disease. We have identified submicrometer supramolecular structures that mediate the early stages of the overall mechanism. The sequence of structural transformations between metastable intermediates were captured and characterized by atomic force microscopy guided by a fluorescent probe sensitive to preamyloid species. A novel ~0.3-0.6 μm molecular assembly, denoted the acuna, nucleates, expands, and liberates fibers with distinctive segmentation and a filamentous fuzzy fringe. These fuzzy fibers serve as precursors of mature amyloid fibrils. Cryo-electron tomography resolved the acuna inner structure as a scaffold of highly condensed colloidal masses interlinked by thin beaded threads, which were perceived as fuzziness by atomic force microscopy. On the basis of the combined data, we propose a sequential mechanism comprising molecular, colloidal, and fibrillar stages linked by reactions with disparate temperature dependencies and distinct supramolecular forms. We anticipate novel diagnostic and therapeutic approaches to Parkinson's and related neurodegenerative diseases based on these new insights into the aggregation mechanism of α-synuclein and intermediates, some of which may act to cause and/or reinforce neurotoxicity.  相似文献   

17.
In the animal kingdom, living in group is driven by a tradeoff between the costs and the benefits of this way of life. This review focuses especially on the benefits of aggregation and crowding in woodlice (Crustacea: Isopoda: Oniscidea). Indeed, woodlice are well known to live in groups. Their aggregation behavior, as described in the early works of Allee, is regarded as a mechanism to prevent desiccation to which woodlice are extremely sensitive. However, it is now clear that there are additional benefits to aggregation in woodlice. Hence, this review addresses not only the limitation of water loss as the main factor explaining aggregation patterns, but also alternative explanations as reduction of oxygen consumption, increase in body growth, biotic stimuli for reproduction, better access to mates, possible shared defenses against predators, promotion of coprophagy as a secondary food source, sheltering behavior and the acquisition of internal symbionts. In addition, we place woodlice in the context of a terrestrialization process and propose that woodlice—the only suborder of Crustacea almost entirely composed of strictly terrestrial species—are a model taxon for studying the evolution of sociality through the transition from water to land. Further, we discuss other ultimate causes of aggregation preserved in terrestrial isopods in light of those explained in aquatic isopods and under the concept of exaptation. This knowledge could help understand, in this and other taxa, how the spatial closeness between conspecifics may promote the colonization of new environments and nonphysiological responses to climatic constraints.  相似文献   

18.
Climate change is uncertain and has uncertain effects on the suitabilities of species habitats. Conservation strategies have to take this uncertainty into account. Two concepts for addressing uncertainty are, to make strategies adaptive and robust. Using a stylized ecological-economic model in which a decision maker can allocate a conservation budget between two time periods and two regions, I explore how the cost-effective allocation of the budget depends on ecological and economic parameters, including parameters describing the uncertain dynamics of climate change; and under which circumstances adaptive allocation strategies significantly outperform fixed strategies. Even if an adaptive strategy is politically feasible, its optimisation requires some knowledge about the dynamics of the climate change in the form of statistics like mean and variance of climate parameters. If these statistics are estimated wrong then even an adaptive strategy may fail. To explore the risk of such failure I subject the cost-effective strategies derived in the first part of the analysis to a robustness analysis that, among others, identifies those strategies that are relatively prone to wrong expectations of the climate change. Amongst others, the analysis reveals that flexibility pays only if there is uncertainty in the relative performances of different strategies; and depending on whether substitution between the benefits of the two time periods is allowed or not, the most robust strategy is to concentrate conservation expenses to the first period or to allocate the budget evenly amongst the two time periods, respectively.  相似文献   

19.
Zhai J  Lee TH  Small DH  Aguilar MI 《Biochemistry》2012,51(6):1070-1078
Alzheimer's disease (AD) is a common form of dementia, which is characterized by the presence of extracellular amyloid plaques comprising the amyloid β peptide (Aβ). Although the mechanism underlying AD pathogenesis remains elusive, accumulating evidence suggests that the process of amyloid fibril formation is a surface-mediated event, which plays an important role in AD onset and progression. In this study, the mechanism of Aβ aggregation on hydrophobic surfaces was investigated with dual polarization interferometry (DPI), which provides real-time information on early stages of the aggregation process. Aggregation was monitored on a hydrophobic C18 surface and a polar silicon oxynitride surface. The DPI results showed a characteristic Aβ aggregation pattern involving a decrease in the density of Aβ at the surface followed by an increase in the thickness on the hydrophobic C18 chip. Most importantly, the DPI measurements provided unique information on the early stages of Aβ aggregation, which is characterized by the presence of initially slow nucleus formation process followed by exponential fibril elongation. The dimensions of the putative nucleus corresponded to a thickness of ~5 nm for both Aβ40 and Aβ42, which may represent about 10-15 molecules. The results thus support the nucleation-dependent polymerization model as indicated by the presence of a nucleation phase followed by an exponential growth phase. These results are the first reported measurements of the real-time changes in Aβ molecular structure during the early stages of amyloid formation at the nanometer level.  相似文献   

20.
<正>PTEN is a powerful tumor suppressor gene frequently mutated in human cancers and autism spectrum disorders.PTEN protein is located both in the cytoplasm and nucleus and can also be secreted from cells. The best characterized function of PTEN is its ability to dephosphorylate Ptd Ins(3,4,5)P3 and converts it back into PIP2 in the cytoplasm,therefore antagonizing the PI3K/AKT pathway which is mainly involved in regulation of cell growth, differentiation,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号