首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen L  Shi SD  Liu YQ  Gao QJ  Yi X  Liu KK  Liu H 《Carbohydrate research》2011,346(10):1250-1256
A novel 1,2-cis stereoselective synthesis of protected α-D-Gal-(1→2)-D-Glc fragments was developed. Methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3-O-benzoyl-4,6-O-benzylidene-α-D-glucopyranoside (13), methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3,4,6-tri-O-benzoyl-α-D-glucopyranoside (15), methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3-O-benzoyl-4,6-O-benzylidene-β-D-glucopyranoside (17), and methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3,4,6-tri-O-benzoyl-β-D-glucopyranoside (19) were favorably obtained by coupling a new donor, isopropyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-1-thio-β-D-galactopyranoside (2), with acceptors, methyl 3-O-benzoyl-4,6-O-benzylidene-α-D-glucopyranoside (4), methyl 3,4,6-tri-O-benzoyl-α-D-glucopyranoside (5), methyl 3-O-benzoyl-4,6-O-benzylidene-β-D-glucopyranoside (8), and methyl 3,4,6-tri-O-benzoyl-β-D-glucopyranoside (12), respectively. By virtue of the concerted 1,2-cis α-directing action induced by the 3-O-allyl and 4,6-O-benzylidene groups in donor 2 with a C-2 acetyl group capable of neighboring-group participation, the couplings were achieved with a high degree of α selectivity. In particular, higher α/β stereoselective galactosylation (5.0:1.0) was noted in the case of the coupling of donor 2 with acceptor 12 having a β-CH(3) at C-1 and benzoyl groups at C-4 and C-6.  相似文献   

2.
We describe for the first time the chemical synthesis of a tetramannoside, containing both α (1  2) and β (1  2) linkages. Dodecylthio (lauryl) glycosides were prepared from odorless dodecyl thiol and used as donors for the glycosylation steps. This tetramannoside, was coupled to a mantyl group, and revealed to be a perfect substrate of β-mannosyltransferase Bmt3, confirming the proposed specificity and allowing the preparation of a pentamannoside sequence (β Man (1,2) β Man (1,2) α Man (1,2) α Man (1,2) α Man) usable as a novel substrate for further elongation studies.  相似文献   

3.
ON THE STRUCTURE OF A NEW, FUCOSE CONTAINING GANGLIOSIDE FROM PIG CEREBELLUM   总被引:12,自引:7,他引:5  
A new ganglioside, provisionally named GLIVa, was isolated in pure form from pig cerebellum. Ganglioside GLIVa is a disialoganglioside containing fucose. Its basic neutral glycosphingolipid core is the gangliotetraose ceramide: Gal, β 1 → 3 GalNAc, β 1 → 4 Gal, β 1 → 4 Glc, β 1 → Cer. Fucose is α-glycosidically linked to the 2-position of external galactose and one N-acetylneuraminic acid is linked to the other one by an α, 2 → 8 linkage. Thus the total structure of ganglioside GLIVa is the following: Fuc, α 1 → 2 Gal, β 1 → 3 GalNAc, β 1 → 4 (NeuAc, α 2 48 NeuAc, α 2 → 3) Gal, β 1 → 4 Glc, β 1 → Ceramide. According to the IUPAC-IUB Commission on Biochemical Nomenclature is indicated as II3α(NeuAc)2 IV2αFuc-GgOse4Cer.  相似文献   

4.
Lee YJ  Fulse DB  Kim KS 《Carbohydrate research》2008,343(10-11):1574-1584
The synthesis of dibenzyl 6-O-naphthylmethyl-2,3,5-tri-O-benzoyl-beta-D-galactofuranosyl-(1-->5)-2,3-di-O-benzoyl-6-O-benzyl-beta-D-galactofuranosyl-(1-->4)-3-O-benzyl-2-O-pivaloyl-alpha-l-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-4,6-di-O-benzoyl-alpha-D-glucopyranosyl phosphate (1), a protected form of the tetrasaccharide phosphate of the linkage region of the arabinogalactan-peptidoglycan complex in the mycobacterial cell wall, has been accomplished. Key steps include the coupling of four monosaccharide building blocks with complete stereoselectivity by glycosylations employing thioglycosides, 2'-carboxybenzyl glycosides, and glycosyl fluorides as glycosyl donors. The alpha-glycosyl phosphate linkage was also stereoselectively elaborated by reaction of a tetrasaccharide hemiacetal with tetrabenzyl pyrophosphate in the presence of a base.  相似文献   

5.
Human chorionic gonadotropin (hCG) purified from placenta, like urinary hCG, is shown to have the sialylated forms of three neutral oligosaccharides: Galβ1→4GlcNAcβ1→2Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4(Fucα1→6)GlcNAc (N-1), Galβ1→4GlcNAcβ1→2Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4GlcNAc (N-2) and Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4GlcNAc (N-3). Gel permeation chromatographic analysis of oligosaccharides released from α- and β-subunits of placental hCG has revealed that the α-subunit has one each of sialylated N-2 and N-3, while the β-subunit has one each of sialylated N-1 and N-2.  相似文献   

6.
The substrate specificity of an α-mannosidase purified from Aspergillus saitoi was studied in detail. This enzyme hydrolyzes yeast mannan partially but does not act on p-nitrophenyl α-mannopyranoside. Survey of the action of the enzyme on various oligosaccharides liberated from glycoproteins indicated that the enzyme hydrolyzes Manα1→2Man linkage but not Manα1→3Man and Manα1→6 Man linkages at all. All Manα1→2 residues in intact bovine pancreatic ribonuclease B were removed completely by incubation with the α-mannosidase.  相似文献   

7.
Human antithrombin III contains four asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively released as radioactive oligosaccharides from the polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. All of the oligosaccharides, thus obtained, contain N-acetylneuraminic acid. A same neutral nonaitol was released from all acidic oligosaccharides by sialidase treatment. By combination of the sequential exoglycosidase digestion and methylation analysis, their structures were elucidated as NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6-(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manαl → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, and NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc.  相似文献   

8.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

9.
魔芋精粉经 β 甘露聚糖酶酶解成寡糖后 ,用活性炭柱进行分离纯化 ,以不同浓度 (5 % ,10 % ,2 0 % )的乙醇洗脱 .研究不同洗脱组分对链脲佐菌素 (STZ)诱导糖尿病模型的胰岛NO自由基释放量的影响 .发现 1mg ml以 5 %乙醇洗脱的寡糖可以使胰岛培养液中的NO自由基释放量平均下降2 5 4 % (P <0 0 5 ) ,0 1mg ml以 5 %乙醇洗脱的寡糖使NO自由基水平下降 2 0 % (P <0 0 5 ) .结果表明 ,5 %乙醇洗脱的魔芋寡糖对保护胰岛免受链脲佐菌素 (STZ)的破坏有一定的作用 .用凝胶色谱、红外光谱、元素分析、核磁共振光谱、质谱等方法初步分析了 5 %乙醇洗脱的魔芋寡糖的化学结构 .发现该糖是一种四糖 ,分子量为 6 6 6 .其推测性结构式为 :β D Man(1→ 4 ) β D Man(1→ 4 ) β D Glc(1→ 4 )α D Man ,β D Man(1→ 4 ) β D Glc(1→ 4 ) β D Man(1→ 4 )α D Man或 β D Glc(1→ 4 ) β D Man(1→4 ) β D Man(1→ 4 )α D Man .  相似文献   

10.
The sugar specificity of Escherichia coli 346 and of the type-1 fimbriae isolated from this organism has been studied by quantitative inhibition of the agglutination of mannan-containing yeast cells. The best inhibitors of the agglutination by the bacteria were the oligosaccharides Manα1→6[Manα1→3]Manα1→6[Manα1→2Manα1→3]ManαOMe, Manα1→6[Manα1→3]Manα1→6[Manα1→3]ManαOMe and Manα1→3Manβ1→4GlcNAc, and the aromatic glycoside p-nitrophenyl α-d-mannoside, all of which were 20–30 times more inhibitory than methyl α-d-mannoside. The disaccharides Manα1→3Man, Manα1→2Man and Manα1→6Man, the tetrasaccharide Manα1→2Manα1→3Manβ1→4GlcNAc and the pentasaccharide Manα1→2Manα1→2Manα1→3Manβ1→4GlcNAc, were all poor inhibitors. A very good correlation was found between the relative inhibitory activity of the different sugars tested with intact bacteria and with the isolated fimbriae. Our findings show that the combining site of the E. coli lectin is an extended one, corresponding to the size of a trisaccharide, that it contains a hydrophobic region, and that it is in the form of a pocket on the surface of the lectin. The combining site fits best the structures found in short oli gomannosidic chains present in N-glycosidically linked glycoproteins.  相似文献   

11.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

12.
A minor glycopeptide was newly isolated from the exhaustive pronase digest of crystalline ovalbumin by Dowex-50w column chromatography, and its structure was determined as Manα1→3Manα1→6 (Manα1→3) Manβ1→4GlcNAcβ1→4GlcNAc→Asn. This glycopeptide (GP-VI) has the smallest carbohydrate unit among the ovalbumin glycopeptides so far reported, and is also the smallest glycopeptide of all which are susceptible to endo-β-N-acetylglucosaminidases CII and H. This finding, together with the already reported data of the action of both enzymes to glycopeptides of known structures, elucidates that the structural requirement of CII enzyme for its substrate is R→2Manα1→3 (R→6) Manα1→6 (R→2Manα1→3) (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn, in which R represents either hydrogen or sugars, and that of H enzyme is R→2Manα1→3 (R→6) Manα1→6 (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn.  相似文献   

13.
Commercially available fig latex contains several endo-β-N-acetylglucosaminidases which catalyze the reaction: (Man)nG1cNAcβ1→4G1cNAcAsn → (Man)nG1cNAc + G1cNAcAsn. Using (NH4)2SO4 fractionation followed by chromatography on Sephadex G-100 and DEAE-Sephadex A-50, two distinct types of endo-β-N-acetylglucosaminidases have been partially purified and characterized. One, called F-I, hydrolyzes the di-N-acetylchitobiosyl linkage in the glycopeptide, (Man)3(G1cNAc)2Asn prepared from human IgG, much faster than that linkage in the glycopeptides, (Man)5(G1cNAc)2Asn and (Man)6(G1cNAc)2Asn both from ovalbumin. The other, called F-II, hydrolyzes the same linkage in (Man)5(G1cNAc)2-Asn and (Man)6(G1cNAc)2Asn, but not that in (Man)3(G1cNAc)2Asn.  相似文献   

14.
Valienol-derived allylic C-1 bromides have been used as carbaglycosyl donors for α-xylo configured valienamine pseudodisaccharide synthesis. We synthesised valienamine analogues of the Glc(α1→3)Glc and Glc(α1→3)Man disaccharides representing the linkages cleaved by α-Glucosidase II in N-glycan biosynthesis. These (N1→3)-linked pseudodisaccharides were found to have some α-Glucosidase II inhibitory activity, while two other (N1→6)-linked valienamine pseudodisaccharides failed to inhibit the enzyme.  相似文献   

15.
Cathepsin D from porcine spleen contained mannose (3.3%), glucosamine (1.4%), and mannose 6-phosphate (0.08%). Essentially all of the oligosaccharides of cathepsin D could be released by endo-β-N-acetylglucosaminidase H, pointing to oligomajmoside types of structures. Three neutral oligosaccharide fractions, containing 5, 6, and 7 mannose residues, respectively, were isolated by gel permeation chromatography on Bio-Gel P-2. Studies using exoglycosidase digestions and 500-MHz 1H NMR spectroscopy revealed that their structures are [Manα1 → 2]0 or 1Manα1 → 6[Manα1 → 3]Manα1 → 6[(Manα1 → 2)0 or 1Manα1 → 3]Manβ1 → 4GlcNAcβ1 → 4 GlcNAc. These structures are identical to what have recently been proposed by Takahashi et al. for the major oligosaccharide units of cathepsin D from the same source (T. Takahashi P.G. Schimidt, and J. Tang (1983)J. Biol. Chem.258, 2819–2930), except for the occurrence of two isomeric oligosaccharides containing six mannoses. Only a part (3.4%) of the oligosaccharides were acidic, containing phosphates in monoester linkage. The phosphorylated oligosaccharides also consisted of oligomannoside-type chains which were analogous to, but more heterogeneous in size than the neutral oligosaccharides. Cathepsin D was bound to a mannose- and N-acetylglucosamine-specific lectin (mannan-binding protein) isolated from rabbit liver with the Ki value of 5.4 × 10?6m.  相似文献   

16.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

17.
Three pentasaccharide analogues of the Brucella A antigen [----2)-alpha-D-Rhap4NFo-(1----], each with one formamido group replaced by a hydroxyl group, have been prepared as their methyl glycosides. Mono- and di-saccharide thioglycosides of D-rhamnose and 4-azido-4,6-dideoxy-D-mannose were used as glycosyl donors for the preparation of protected pentasaccharide derivatives with trisaccharides as intermediates. Glycosylations were performed by activation in situ of the thioglycosides with bromine in the presence of a glycosyl acceptor and silver triflate as promoter. Reduction of the azido groups with hydrogen sulfide. N-formylation with ethyl formate, and hydrogenolysis then gave the target pentasaccharides.  相似文献   

18.
Endo-α-mannosidase, a GH99-family glycoside hydrolase, cleaves α-mannoside linkages with glucose residues. This enzyme is proposed to play a critical role in N-glycan processing for deglucosylation. To measure endo-α-mannosidase activity, we synthesized a fluorescently labeled tetrasaccharide derivative (Glcα1-3Manα1-2Manα1-2Manα1-O–C3H6–NH-Dansyl) in a stereocontrolled manner. The tetrasaccharide skeleton was prepared by step-wise coupling using mannose donors 4 and 7. The 1,2-cis α-glycosidic linkage on the non-reducing end of the glucose residue was constructed by inversion of the stereochemistry of the C-2 hydroxyl group in the α-mannose residue. Finally, the dansyl group was introduced at the reducing end via an aminopropyl linker. This probe successfully measured endo-α-mannosidase activity.  相似文献   

19.
In order to provide further information on the chemical nature of the antigenideterminants of the mannan of Saccharomyces cerevisiae, the mannan was digested by Arthrobacter α -mannosidase, and 9, 21, 35, 59 and 62%-partially degraded mannans were prepared in the present study. Acetolysis of each degraded mannan showed that only a small amount of the tetrasaccharide was detectable in the 35%-digested mannan, whereas the predominant product of the 59 and 62%-digested mannan was mannose. The result of a quantitative precipitation reaction with the degraded mannans showed that the precipitation activities were partially or completely destroyed by the action of the enzyme. The lack of the tetrasaccharide moieties of the mannan were noticeable by a decrease in the precipitating ability. It was observed that the decreasing ratio of either the maximum amount of the antibody N precipitable by the mannan or per cent degradation of the mannan were essentially equal and yielded nearly a straight relationship between 0 and 2.0 hr digestion. However, the 59 and 62%-digested mannans, containing trace amounts of di- and trisaccharides in the branching parts, showed no significant antigenic activities. Furthermore, the molar ratio of the tetrasaccharide relative to the trisaccharide also gradually decreased. These observations confirm that the tetrasaccharide moiety, Man α1→3Man α1→2Manα1→2Man, plays an important role as the antigenic determinant. The core mannan moiety completely lost both the precipitating ability and inhibitory activity in ranges employed up to 1500 μg. These findings offer a direct proof that the core mannan moiety of mannan is not responsible for antigenic activity, and functions merely as the “carrier” of the antigenic determinants which dominate the immunological specificity.  相似文献   

20.
A machine learning approach was explored for the prediction of the anomeric configuration, residues, and type of linkages of disaccharides using (13)C NMR chemical shifts. For this study, 154 pyranosyl disaccharides were used that are dimers of the α or β anomers of d-glucose, d-galactose or d-mannose residues bonded through α or β glycosidic linkages of types 1→2, 1→3, 1→4, or 1→6, as well as methoxylated disaccharides. The (13)C NMR chemical shifts of the training set were calculated using the casper (Computer Assisted SPectrum Evaluation of Regular polysaccharides) program, and chemical shifts of the test set were experimental values obtained from the literature. Experiments were performed for (1) classification of the anomeric configuration, (2) classification of the type of linkage, and (3) classification of the residues. Classification trees could correctly classify 67%, 74%, and 38% of the test set for the three tasks, respectively, on the basis of unassigned chemical shifts. The results for the same experiments using Random Forests were 93%, 90%, and 68%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号