首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

We have recently reported that serotonin4 (5-HT4) receptor agonists have a promising potential as fast-acting antidepressants. Here, we assess the extent to which this property may be optimized by the concomitant use of conventional antidepressants.

Methodology/Principal Findings

We found that, in acute conditions, the 5-HT4 agonist prucalopride was able to counteract the inhibitory effect of the selective serotonin reuptake inhibitors (SSRI) fluvoxamine and citalopram on 5-HT neuron impulse flow, in Dorsal Raphé Nucleus (DRN) cells selected for their high (>1.8 Hz) basal discharge. The co-administration of both prucalopride and RS 67333 with citalopram for 3 days elicited an enhancement of DRN 5-HT neuron average firing rate, very similar to what was observed with either 5-HT4 agonist alone. At the postsynaptic level, this translated into the manifestation of a tonus on hippocampal postsynaptic 5-HT1A receptors, that was two to three times stronger when the 5-HT4 agonist was combined with citalopram. Similarly, co-administration of citalopram synergistically potentiated the enhancing effect of RS 67333 on CREB protein phosphorylation within the hippocampus. Finally, in the Forced Swimming Test, the combination of RS 67333 with various SSRIs (fluvoxamine, citalopram and fluoxetine) was more effective to reduce time of immobility than the separate administration of each compound.

Conclusions/Significance

These findings strongly suggest that the adjunction of an SSRI to a 5-HT4 agonist may help to optimize the fast-acting antidepressant efficacy of the latter.  相似文献   

2.
Abstract

[35S]-GTPγS binding has been used to study the function of cloned human 5-HT1D receptor subtypes stably expressed in chinese hamster ovary (CHO) cells. 5-HT stimulated [35S]-GTPγS binding to membranes from cells expressing 5-HT1Dα or 5-HT1Dβ receptors. In membranes containing 5-HT1Dβ receptors, 5-CT and sumatriptan stimulated binding to a similar extent as 5-HT while yohimbine, metergoline and 8-OHDPAT were partial agonists. The order of potency for agonists was 5-CT > 5-HT > metergoline > sumatriptan > yohimbine > 8-OHDPAT. The stimulation of binding by 5-HT in membranes containing 5-HT1Dβ receptors was potently antagonised by methiothepin (pA2 8.9 ± 0.1). The overall pharmacological profile for the human 5-HT1Dβ receptor, defined using [35S]-GTPγS binding, agreed well with that reported for inhibition of forskolin-stimulated adenylyl cyclase. In addition, methiothepin and ketanserin inhibited basal [35S]-GTPγS binding to membranes containing 5-HT1Dα or 5-HT1Dβ receptors, suggesting that these compounds show negative efficacy at 5-HT1D receptor subtypes. The data show that [35S]-GTPγS binding is a suitable method for studying the interaction between cloned human 5-HT1D receptors and G-proteins.  相似文献   

3.
The purpose of the present study was the characterization of the receptors participating in the regulatory mechanism of glial Na+/K+-ATPase by serotonin (5-HT) in rat brain. The activity of the Na+ pump was measured in four brain regions after incubation with various concentrations of serotoninergic agonists or antagonists. A concentration-dependent increase in enzyme activity was observed with the 5-HT1A agonist R (+)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (8-OH-DPAT) in homogenates or in glial membrane enriched fractions from cerebral cortex and in hippocampus. Spiperone, a 5-HT1A antagonist, completely inhibited the response to 8-OH-DPAT but had no effect on Na+/K+-ATPase activity in cerebellum where LSD, a 5-HT6 agonist, elicited a dose-dependent response similar to that of 5-HT. In brainstem, a lack of reponse to 5-HT and other agonists was confirmed. Altogether, these results show that serotonin modulates glial Na+/K+-ATPase activity in the brain, apparently not through only one type of 5-HT receptor. It seems that the receptor system involved is different according to the brain region. In cerebral cortex, the response seems to be mediated by 5-HT1A as well as in hippocampus but not in cerebellum where 5-HT6 appears as the receptor system involved.  相似文献   

4.
Abstract

5-HT, receptor-mediated ion currents evoked by the full agonists 5-hydroxy-tryptamine (5-HT), quatemary 5-HT (5-HTQ), meta-chlorophenylbiguanide (mCPBG) and the partial agonists dopamine and tryptamine have been investigated in whole-cell voltage clamp experiments on N1E-115 mouse neuroblastoma cells. All agonists desensitize the 5-HT3 receptor completely with a steep concentration dependence and a potency order of: mCPBG > 5-HTQ = 5-HT >> tryptamine > dopamine. The time course of recovery from desensitization depends on the agonist used. Recovery from partial agonist-induced desensitization is single exponential. whereas the desensitization induced by full agonists recovers with sigmoid kinetics, suggesting at least 3 transitions between 4 states. It is concluded that full and partial agonists induce distinct desensitized states.  相似文献   

5.
6.
《Cell calcium》2016,59(6):549-557
BackgroundThe role of the serotonin receptor 4 (5-HT4R) pathway in cardiac excitation-contraction coupling (ECC) remains unclear. In the brain, induction of the calcium (Ca2+)-binding protein p11 enhances 5-HT4R translocation and signaling and could therefore be considered as a modulator of the 5-HT4R pathway in the myocardium. p11 expression is increased by brain-derived neurotrophic factor (BDNF) or antidepressant drugs (imipramine). Thus, we investigated whether p11 regulates the 5-HT4R pathway in the heart in physiological conditions or under pharmacological induction and the effects on calcium handling.Methods and resultsp11 expression was induced in vivo in healthy Wistar rats by imipramine (10 mg/kg/21 days) and in vitro in left ventricular cardiomyocytes exposed to BDNF (50 ng/ml/8 h). Cell shortening and real-time Ca2+ measurements were processed on field-stimulated intact cardiomyocytes with the selective 5-HT4R agonist, prucalopride (1 μM). Both imipramine and BDNF-induced cardiomyocyte p11 expression unmasked a strong response to prucalopride characterized by an increase of both cell shortening and Ca2+ transient amplitude compared to basal prucalopride associated with a high propensity to trigger diastolic Ca2+ events. Healthy rats treated with BDNF (180 ng/day/14 days) exhibited a sustained elevated heart rate following a single injection of prucalopride (0.1 mg/kg) which was not observed prior to treatment.ConclusionsWe have identified a novel role for p11 in 5-HT4R signaling in healthy rat ventricular cardiomyocytes. Increased p11 expression by BDNF and imipramine unraveled a 5-HT4R-mediated modulation of cardiac Ca2+ handling and ECC associated with deleterious Ca2+ flux disturbances. Such mechanism could partly explain some cardiac adverse effects induced by antidepressant treatments.  相似文献   

7.
Serotonin type 3 receptors (5-HT3R) are members of the ligand gated ion channel receptor family. In this study, the interactions of the agonists serotonin (5-HT) and m-chlorophenylbiguanidine (mCPBG) at the binding site of the 5-HT3AR were investigated at an atomic level. Site-directed mutagenesis studies in Loop B and E along with our earlier published results from mutations within Loops A, C, and D provide comprehensive data on the interaction of 5-HT and mCPBG with 5-HT3ARs. Using this data we have constructed a refined homology model of the 5-HT3AR that considers all of the available experimental data. 5-HT and mCPBG were docked into the newly constructed homology model and the amino acid residues critical in binding of these agonists were compared and analyzed. Our docking results reveal many similar binding interactions for 5-HT and mCPBG. Namely, residues THR181, TRP183, PHE226, ILE228, TYR234 and GLU129 were all found to play key roles in binding of both 5-HT and mCPBG. However, the results also revealed two important differences that exist between the interactions of the two agonists. In our model, a hydrogen bond is formed between the indole hydrogen of 5-HT and the residue TYR153. This interaction is not present in the case of mCPBG. Conversely, a hydrogen bond exists between SER182 and a protonated nitrogen of mCPBG, which does not exist in 5-HT. Our modeling results were found to be in accordance with experimental data.  相似文献   

8.
The ability of the selective 5-HT1A receptor agonist R(+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT) to bind with 5-HT receptor(s) on cultured, identified neurones in Lymnaea stagnalis was examined. The identified neurones studied were from the buccal ganglia and the serotonin-containing cerebral giant cells (CGCs). 5-HT and its agonists were applied from puffer pipettes, whilst 5-HT antagonists were applied in the bathing medium. At 10−3 M, the 5-HT1A agonist, always produced paroxysmal depolarizing shifts (PDS) while at a lower concentration (10−4 M), it always mimicked the effects of 10−3 M 5-HT. 8-OH-DPAT (10−4 M) and 5-HT 10−3 M produced dose-dependent increases in the responses they evoked. At 10−4 M, the 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide hydrochloride (m-CPBG), failed to hyperpolarize most of the neurones hyperpolarized by 5-HT. At 10−4 M, the antagonists ketanserin (5-HT2), MDL 72222 (5-HT3), and pindobind-5-HT1A (5-HT1A) consistently abolished spike generation ii spontaneously active neurones. Both ketanserin and MDL 72222 failed to block the actions of 8-OH-DPAT and only partially blocked those of 5-HT, but pindobind-5-HT1A completely, but reversibly,blocked the 8-OH-DPAT effects while greatly reducing those of 5-HT. These results suggest that 5-HT1A receptor subtypes might be involved in the hyperpolarizing responses of the CGCs and their follower motor neurones in the buccal ganglia of Lymnaea stagnalis to 5-HT. The presence of 5-HT1A receptors on these neurones can be considered to correspond with those found in mammals because their pharmacological responses resemble those of mammalian 5-HT1A receptors.  相似文献   

9.
Recent progress in the molecular pharmacology of 5-HT receptors and the development of selective ligands for various 5-HT receptor subtypes has advanced our understanding of the role of 5-HT mechanisms in the control of food intake and body weight The most intensively investigated 5-HT receptor subtypes have been the 5-HT1A receptor, the 5-HT1B receptor andthe5-HT2C receptor. The overall pattern of results to date suggests that selective 5-HT2C agonists may be novel anorectic drugs and prove useful in the treatment of obesity. However, a number of issues remain unresolved, particularly regarding potential side-effects, as the 5-HT2C receptor agonist mCPP has been reported to induce anxiety and nausea in humans, actions that would clearly limit its therapeutic utility. In addition, the possible role of recently cloned 5-HT receptor subtypes such as 5-ht5,5-ht6 and 5-ht7 remains unexplored and the development of selective ligands for these sites has the potential to lead to new treatments for obesity .  相似文献   

10.
The indolealkylamine 5-hydroxytryptamine (5-HT, 0.1 nM-1 μM) caused dose-dependent increases in the number of contractions observed in guts isolated from the caterpillar Spodoptera frugiperda. Of the 5-HT analogues tested for agonist action, 2-methyl-5-HT (0.1-10 μM) was a full agonist with reduced potency while α-methyl-5-HT (0.1-100 μM), 5-carboxamidotryptamine (0.1-100 μM), 5-methoxytryptamine (5-MeOT) (10 nM-10 μM), and tryptamine (1-100 μM) were partial agonists. Incubation of isolated guts with proven mammalian 5-HT receptor antagonists showed that cyproheptadine (10 nM-1 μM), MDL 72222 (1-10 μM), tropisetron (1-10 μM) and 5-benzoyloxygramine (1-10 μM) were potent non-competitive antagonists of 5-HT-induced tissue contraction. In comparison, ketanserin (0.1-1 μM) was a competitive antagonist. The mammalian selective serotonin reuptake inhibitors, clomipramine (10 nM-10 μM) and fluoxetine (10 nM-10 μM) also caused non-competitive inhibition of 5-HT-induced contraction while fluvoxamine (10 nM-10 μM) was a weak competitive antagonist. Low doses of clomipramine (0.1 μM) caused potentiation of 5-HT-induced gut contraction thereby suggesting the presence of 5-HT reuptake systems in this tissue. The contractile effects of 5-HT were inhibited by verapamil, Li+ and H7 and potentiated by theophylline thereby indicating that L-type Ca2+ channels, phosphatidylinositol second messengers and cAMP, respectively, are involved in 5-HT-induced tissue contraction. The 5-HT receptors mediating contractility in the gut of S. frugiperda have properties in common with mammalian 5-HT2 and Drosophila 5-HTdro2A/2B receptors. In addition, these data suggest that the tissue also contains receptors that are similar to mammalian 5-ht6 and 5-HT7 as well as Drosophiladro1 receptors. However, the primary amino acid sequence of these lepidopteran 5-HT receptors will have to be elucidated before full comparisons can be made.  相似文献   

11.
The discovery of a series of 5-HT4 receptor agonists based on a novel 2-alkylbenzimidazole aromatic core is described. Optimization of the 2-substituent of the benzimidazole ring led to a series of agonists with subnanomolar binding affinity and moderate-to-high intrinsic activity relative to that of 5-HT. Consistent with our previously described multivalent design approach to this target, subsequent optimization of the linker and secondary binding group regions of the series afforded compound 18 (TD-8954), a potent and selective 5-HT4 receptor agonist in vitro with demonstrated prokinetic activity in multiple species.  相似文献   

12.
[32P]Phosphatidic acid (PA)-formation was quantified in calf aortic smooth muscle cultures for measuring the activation of the signal transducing system coupled to the 5-hydroxytryptamine2-(5-HT2) receptor. [32P]PA-formation was increased upon stimulation of smooth muscle cells with serotonin (5-HT) and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM), but not with the 5-HT1 agonists N,N-dipropyl-8-hydroxy-2-aminotetralin and RU 24969. The potency of drugs to inhibit the 5-HT induced [32P]PA-formation closely corresponded to their binding affinity for 5-HT2 receptors. 24-Hour treatment of smooth muscle cultures with 5-HT or DOM resulted in a substantial decrease of 5-HT induced [32P]PA-formation. In contrast to the anomalous 5-HT2 receptor regulation in vivo, 5-HT2 receptors on smooth muscle cells appeared to be desensitized by agonist treatment.  相似文献   

13.
14.
Abstract

To study the regulation of 5-HT1A receptors in the brainstem, the region most relevant to the serotonin syndrome and to serotonin-responsive human myoclonic disorders, we chronically treated rats with various 5-HT1A agonists and labeled 5-HT1A sites with [3H]8-OH-DPAT. Daily injection for 30 consecutive days of 10 mg/kg ip 8-OH-DPAT (pre- and post-synaptic 5-HT1A agonist) significantly decreased 8-OH-DPAT-evoked flat body posture, forelimb myoclonus, and hypothermia compared to chronic vehicle injection. There was no cross tolerance to 8-OH-DPAT in rats chronically injected with ipsapirone or buspirone (presynaptic 5-HT1A agonists). However, none of the 5HT1A agonists significantly altered Bmax of brainstem 5-HT1A binding sites. Chronic injection with other drugs such as 1-propranolol, (±) pindolol and spiperone (5-HT1A and 5-HT2 antagonists), methysergide (5-HT1 and 5-HT2 antagonist), and agonists and antagonists at various other 5-HT receptors also had no effect on binding parameters. These data demonstrate lack of cross-tolerance between pre- and post-synaptically acting 5-HT1A agonists and absence of down-regulation of presynaptic 5-HT1A sites at doses which induced tolerance of 5-HT1A-mediated behaviors of the serotonin syndrome. They suggest changes in the post-synaptic cell rather than the receptor recognition site as the mechanism of tolerance.  相似文献   

15.
Forty serotonin-related neurochemicals were tested on embryos and larvae of Lytechinus variegatus and other sea urchin species. Some of these substances (agonists of 5-HT1 receptors, antagonists of 5-HT2, 5-HT3 or 5-HT4 receptors, and inhibitors of the serotonin transporter, SERT) perturbed post-blastulation development, eliciting changes in embryonic/larval phenotypes typical for each class of receptor ligand. These developmental malformations were prevented completely or partially by serotonin (5-HT) or 5-HT analogs (5-HTQ, AA-5-HT), providing evidence for the putative localization of cellular targets. Immunoreactive 5-HT, 5-HT receptors and SERT were found in pre-nervous embryos and larvae of both L. variegatus and Strongylocentrotus droebachiensis. During gastrulation, these components of the serotonergic system were localized to the archenteron (primary gut), mesenchyme-like cells, and often the apical ectoderm. These results provide evidence that pre-nervous 5-HT may regulate early events of sea urchin embryogenesis, mediated by 5-HT receptors or the 5-HT transporter.  相似文献   

16.
Abstract

Serotonin (5-HT) is a potent bioactive substance known to function through a number of different receptor types and subtypes. In our attempt to develop new agents that would interact selectively at certain 5-HT receptors, especially the 5-HT1A subtype, 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) served as a template for the design of novel agents sharing aspects of the pharmacophore of 8-OH-DPAT and 5-HT. 5-HT contains no center of asymmetry, and 8-OH-DPAT shows only very modest stereospecificity for 5-HT1A receptors. To develop agents having enhanced potency and selectivity for the 5-HT1A site, several ring systems offering enhanced conformational rigidity which approximate the oxygen to nitrogen interatomic distances of 8-OH-DPAT and (to a lesser extent) 5-HT were synthesized. Exemplary ring systems include the 8-alkoxy-hexahydroindeno[1,2-c]pyrrole, 5-alkoxy-hexahydro-1H-indeno-[2,1-c]pyridine, and 9-alkoxy-hexahydro-1H-benz[e]isoindole systems. These couformationally restricted molecules demonstrated moderate stereospecificity in their interaction with the 5-HT1A binding site, which was enhanced in compounds with larger nitrogen substituents. Appropriate choice of such derivatives led to highly potent compounds selective for 5-HT1A sites compared with their activity at other 5-HT and/or adrenergic receptors. The pharmacological profile of compounds which appear to act as agonists at 5-HT1A receptors in the central nervous system to lower blood pressure in animal models of hypertension is presented  相似文献   

17.
1. 5-HT (10−8−5 × 10−6 M) relaxed isolated locust foreguts.2. The effects of 5-HT were mimicked by 5,6-DHT, 5-MeOT, tryptamine, 5-MeT, MK212 and methysergide while 5-hydroxyindole, 5-hydroxyindole acetic acid, 5-hydroxytryptophol, NN-DMT, 8-OH DPAT and RU 24969 were without effect.3. Ketanserin (pA2 = 5.65) was a competitive antagonist of the effects of 5-HT, MK212 and methysergide.4. Mianserin (pA2 = 6.3) was also a competititve antagonist of 5-HT but ICS 205-930 had no antagonistic effect on 5-HT-induced relaxation.5. It is concluded that 5-HT relaxes the locust foregut by interacting with 5-HT2-like receptors.  相似文献   

18.
5-Hydroxytryptamine (5-HT) is an endogenous stimulant of intestinal propulsive reflexes. It exerts its effects partly through 5-HT4 receptors; 5-HT4 receptor agonists that are stimulants of intestinal transit are in clinical use. Both pharmacological and recent immunohistochemical studies indicate that 5-HT4 receptors are present on enteric neurons but the specific neurons that express the receptors have not been determined. In the present work, we describe the characterization of an anti-5-HT4 receptor antiserum that reveals immunoreactivity for enteric neurons and other cell types in the gastrointestinal tract. With this antiserum, 5-HT4 receptor immunoreactivity has been found in the muscularis mucosae of the rat oesophagus, a standard assay tissue for 5-HT4 receptors. It is also present in the muscularis mucosae of the guinea-pig and mouse oesophagus. In guinea-pig small intestine and rat and mouse colon, 5-HT4 receptor immunoreactivity occurs in subpopulations of enteric neurons, including prominent large neurons. Double-staining has shown that these large neurons in the guinea-pig small intestine are also immunoreactive for two markers of intrinsic primary afferent neurons, cytoplasmic NeuN and calbindin. Some muscle motor neurons in the myenteric ganglia are immunoreactive for this receptor, whereas it is rarely expressed by secretomotor neurons. Immunoreactivity also occurs in the interstitial cells of Cajal but is faint in the external muscle. Expression of the protein and mRNA has been confirmed in extracts containing enteric neurons. The observations suggest that one site of action of 5-HT4 receptor agonists is the intrinsic primary afferent neurons.This work was supported by the National Health and Medical Research Council of Australia and Pfizer Pharmaceuticals, Japan.  相似文献   

19.
A previous study observed bell-shaped concentration-response isotherms for activation of Gαi3 G-protein subunits by high efficacy 5-HT1A receptor agonists in a Chinese hamster ovary (CHO) cell line expressing high levels of these receptors. This suggested that a signaling switch took place in that cell line (from Gαi3 to activation of other G-proteins) but it was unclear if such effects are observed for 5-HT1A receptors in other cellular environments.Here, using an antibody capture-based [35S]GTPγS binding assay for Gαi3 activation, we investigated whether efficacious 5-HT1A receptor agonists (5-HT, F13714, befiradol, NLX-101), prototypical agonists ((+) and (−)8-OH-DPAT), and partial agonist, antagonists, inverse agonists (pindolol, WAY100635, spiperone) produced similar effects on 5 cell lines expressing different levels of human 5-HT1A receptors.In membranes from cell lines (HeLa, C6-glia and CHO-low) expressing moderate receptor levels (between 1 and 4 pmol/mg of protein), 5-HT, F13714, befiradol and NLX-101 elicited classical sigmoid concentration-response isotherms. In contrast, in cell lines (CHO-high, HEK-293F) expressing high receptor levels (>9 pmol/mg) these agonists elicited bell-shaped concentration-response isotherms that peaked at nanomolar-range concentrations and then returned to baseline or below. Spiperone elicited inverse agonist inhibitory sigmoid isotherms in all membrane preparations while WAY100635 was mostly ‘silent’ for Gαi3 activation. The other compounds elicited diverse responses in the different cell lines suggesting that other factors, in addition to receptor expression levels, could be influencing Gαi3 activation.These data indicate that Gαi3 G-protein activation by 5-HT1A receptor ligands is highly dependent on receptor expression levels and on cellular background. Moreover, the induction of bell-shape concentration-response isotherms by 5-HT and other high-efficacy agonists is consistent with a switch in signaling to other G-protein-mediated signaling cascades, possibly elicited by receptor conformational changes.  相似文献   

20.
《Life sciences》1993,52(9):PL61-PL65
Recently, a 5-hydroxytryptamine (5-HT) receptor has been described, whose pharmacology was distinct from that of the already known serotonergic receptors, so that it has been called 5-HT4. Because the lack of a high affinity radioligand, the identification of this receptor depends entirely on functional pharmacological analysis. Its stimulation leads to an increase in cyclic AMP accumulation in mouse embryo colliculi neurons, in guinea pig hippocampus and in human heart. We studied the effect of two indoleamines, 5-HT and 5-methoxytryptamine (5-MeO-T), and a benzimidazolone derivative, BIMU 8, in stimulating basal adenylyl cyclase activity in human frontal cortex, and characterized the receptor subtype involved. In membranes prepared from this tissue, 5-HT, 5-MeO-T and BIMU 8 dose-dependently stimulated (13–25 %) the basal enzyme activity (220 pmoles cyclic AMP/min/mg protein). 5-MeO-T behaved as a full agonist, BIMU 8 elicited about 60 % of the maximal 5-HT effect. The selective 5-HT1A agonist 8-OH-DPAT, was devoid of any stimulating activity. ICS 205–930, a low affinity 5-HT4 receptor antagonist, completely reversed the effect of all three agonists at high concentrations. Therefore, the present data are consistent with the 5-HT-mediated stimulation of adenylyl cyclase in human frontal cortex resulting by the activation of a 5-HT4 receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号