首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.  相似文献   

2.
Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from delta-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within delta-Proteobacteria were mainly recovered from low-uranium (< or =302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research.  相似文献   

3.
Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.  相似文献   

4.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.  相似文献   

5.
Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from δ-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within δ-Proteobacteria were mainly recovered from low-uranium (≤302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research.  相似文献   

6.
The proposed research will investigate two microbial communities that are of direct relevance to Department of Energy interests. One is the microbial community associated with the in situ bioremediation of uranium-contaminated groundwater. The second is a microbial community that harvests energy from waste organic matter in the form of electricity. These studies will address DOE needs for (1) remediation of metals and radionuclides at DOE sites and (2) the development of cleaner forms of energy and biomass conversion to energy. Our previous studies have demonstrated that the microbial communities involved in uranium bioremediation and energy harvesting are both dominated by microorganisms in the family Geobacteraceae and that the organisms in this family are responsible for uranium bioremediation and electron transfer to electrodes. The initial objectives of this study are to (1) describe the genetic potential of the Geobacteraceae that predominate in the environments of interest; (2) identify conserved patterns of gene expression within the Geobacteraceae family in response to a range of environmental conditions; (3) begin to identify mechanisms controlling the expression of key genes related to survival, growth, and activity in subsurface environments and on electrodes; and (4) use the results from subobjectives 1-3 to develop a conceptual model for predicting gene expression of Geobacteraceae in the environments of interest. This will serve as the basis for a subsequent simulation model of the growth and activity of Geobacteraceae in the subsurface and on electrodes.  相似文献   

7.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.  相似文献   

8.
Speciation of solid-phase uranium in uranium-contaminated subsurface sediments undergoing uranium bioremediation demonstrated that although microbial reduction of soluble U(VI) readily immobilized uranium as U(IV), a substantial portion of the U(VI) in the aquifer was strongly associated with the sediments and was not microbially reducible. These results have important implications for in situ uranium bioremediation strategies.  相似文献   

9.
Speciation of solid-phase uranium in uranium-contaminated subsurface sediments undergoing uranium bioremediation demonstrated that although microbial reduction of soluble U(VI) readily immobilized uranium as U(IV), a substantial portion of the U(VI) in the aquifer was strongly associated with the sediments and was not microbially reducible. These results have important implications for in situ uranium bioremediation strategies.  相似文献   

10.
Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the alpha, beta, delta, and gamma subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-reducing delta-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the delta-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment.  相似文献   

11.
Stimulating microbial reduction of soluble U(VI) to insoluble U(IV) shows promise as a strategy for immobilizing uranium in uranium-contaminated subsurface environments. In order to learn more about which microorganisms might be involved in U(VI) reduction in situ, the changes in the microbial community when U(VI) reduction was stimulated with the addition of acetate were monitored in sediments from three different uranium-contaminated sites in the floodplain of the San Juan River in Shiprock, N.Mex. In all three sediments U(VI) reduction was accompanied by concurrent Fe(III) reduction and a dramatic enrichment of microorganisms in the family Geobacteraceae, which are known U(VI)- and Fe(III)-reducing microorganisms. At the point when U(VI) reduction and Fe(III) reduction were nearing completion, Geobacteraceae accounted for ca. 40% of the 16S ribosomal DNA (rDNA) sequences recovered from the sediments with bacterial PCR primers, whereas Geobacteraceae accounted for fewer than 5% of the 16S rDNA sequences in control sediments that were not amended with acetate and in which U(VI) and Fe(III) reduction were not stimulated. Between 55 and 65% of these Geobacteraceae sequences were most similar to sequences from Desulfuromonas species, with the remainder being most closely related to Geobacter species. Quantitative analysis of Geobacteraceae sequences with most-probable-number PCR and TaqMan analyses indicated that the number of Geobacteraceae sequences increased from 2 to 4 orders of magnitude over the course of U(VI) and Fe(III) reduction in the acetate-amended sediments from the three sites. No increase in Geobacteraceae sequences was observed in control sediments. In contrast to the predominance of Geobacteraceae sequences, no sequences related to other known Fe(III)-reducing microorganisms were detected in sediments. These results compare favorably with an increasing number of studies which have demonstrated that Geobacteraceae are important components of the microbial community in a diversity of subsurface environments in which Fe(III) reduction is an important process. The combination of these results with the finding that U(VI) reduction takes place during Fe(III) reduction and prior to sulfate reduction suggests that Geobacteraceae will be responsible for much of the Fe(III) and U(VI) reduction during uranium bioremediation in these sediments.  相似文献   

12.
The diversity of thermophilic microbial assemblages detected within two neighboring high temperature petroleum formations was shown to closely parallel the different geochemical regimes existing in each. A high percentage of archaeal 16S rRNA gene sequences, related to thermophilic aceticlastic and hydrogenotrophic methanogens, were detected in the natural gas producing Rincon Formation. In contrast, rRNA gene libraries from the highly sulfidogenic Monterey Formation contained primarily sulfur-utilizing and fermentative archaea and bacteria. In addition to the variations in microbial community structure, microbial activities measured in microcosm experiments using high temperature production fluids from oil-bearing formations also demonstrated fundamental differences in the terminal respiratory and redox processes. Provided with the same suite of basic energy substrates, production fluids from the South Elwood Rincon Formation actively generated methane, while thermophilic microflora within the Monterey production fluids were dominated by hydrogen sulfide producing microorganisms. In both cases, molecular hydrogen appeared to play a central role in the stimulation of carbon and sulfur cycling in these systems. In methanogenic production fluids, the addition of sulfur compounds induced a rapid shift in the terminal electron accepting process, stimulating hydrogen sulfide formation and illustrating the metabolic versatility of the subsurface thermophilic assemblage. The high similarity between microbial community structure and activity corresponding with the prevalent geochemical conditions observed in deep subsurface petroleum reservoirs suggests that the resident microflora have adapted to the subsurface physicochemical conditions and may actively influence the geochemical environment in situ.  相似文献   

13.
14.
Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems.  相似文献   

15.
In this study, we evaluated whether the abundance of the functional gene nahAc reflects aerobic naphthalene degradation potential in subsurface and surface samples taken from three petroleum hydrocarbon contaminated sites in southern Finland. The type of the contamination at the sites varied from lightweight diesel oil to high molecular weight residuals of crude oil. Samples were collected from both oxic and anoxic soil layers. The naphthalene dioxygenase gene nahAc was quantified using a replicate limiting dilution-polymerase chain reaction (RLD-PCR) method with a degenerate primer pair. In the non-contaminated samples nahAc genes were not detected. In the petroleum hydrocarbon-contaminated oxic soil samples nahAc gene abundance [range 3 x 10(1)-9 x 10(4) copies (g dry wt soil)(-1)] was correlated (Kendall non-parametric correlation r2=0.459, p<0.01) with the aerobic 14C-naphthalene mineralization potential (range 1 x 10(-5)-0.1 d(-1)) measured in microcosms at in situ temperatures (8 degrees C for subsurface and 20 degrees C for surface soil samples). In these samples nahAc gene abundance was also correlated with total microbial cell counts (r2=0.471, p<0.01), respiration rate (r2=0.401, p<0.01) and organic matter content (r2=0.341, p<0.05). NahAc genes were amplified from anoxic soil layers indicating that, although involved in aerobic biodegradation of naphthalene, these genes or related sequences were also present in the anoxic subsurface. In the samples taken from the anoxic layers, the aerobic 14C-naphthalene mineralization rates were not correlated with nahAc gene abundance. In conclusion, current sequence information provides the basis for a robust tool to estimate the naphthalene degradation potential at oxic zones of different petroleum hydrocarbon-contaminated sites undergoing in situ bioremediation.  相似文献   

16.
17.
Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs), it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209) would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC) and open-circuit microbial fuel cell (o-MFC) systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes.  相似文献   

18.
M. Li  Y. Hong  H. Cao  M. G. Klotz  J.‐D. Gu 《Geobiology》2013,11(2):170-179
In marine ecosystems, both nitrite‐reducing bacteria and anaerobic ammonium‐oxidizing (anammox) bacteria, containing different types of NO‐forming nitrite reductase–encoding genes, contribute to the nitrogen cycle. The objectives of study were to reveal the diversity, abundance, and distribution of NO‐forming nitrite reductase–encoding genes in deep‐sea subsurface environments. Results showed that higher diversity and abundance of nirS gene than nirK and Scalindua‐nirS genes were evident in the sediments of the South China Sea (SCS), indicating bacteria containing nirS gene dominated the NO‐forming nitrite‐reducing microbial community in this ecosystem. Similar diversity and abundance distribution patterns of both nirS and Scalindua‐nirS genes were detected in this study sites, but different from nirK gene. Further statistical analyses also showed both nirS and Scalindua‐nirS genes respond similarly to environmental factors, but differed from nirK gene. These results suggest that bacteria containing nirS and Scalindua‐nirS genes share similar niche in deep‐sea subsurface sediments of the SCS, but differed from those containing nirK gene, indicating that community structures of nitrite‐reducing bacteria are segregated by the functional modules (NirS vs. NirK) rather than the competing processes (anammox vs. classical denitrification).  相似文献   

19.
20.
The remediation of uranium from soils and groundwater at Department of Energy (DOE) sites across the United States represents a major environmental issue, and bioremediation has exhibited great potential as a strategy to immobilize U in the subsurface. The bioreduction of U(VI) to insoluble U(IV) uraninite has been proposed to be an effective bioremediation process in anaerobic conditions. However, high concentrations of nitrate and low pH found in some contaminated areas have been shown to limit the efficiency of microbial reduction of uranium. In the present study, nonreductive uranium biomineralization promoted by microbial phosphatase activity was investigated in anaerobic conditions in the presence of high nitrate and low pH as an alternative approach to the bioreduction of U(VI). A facultative anaerobe, Rahnella sp. Y9602, isolated from soils at DOE's Oak Ridge Field Research Center (ORFRC), was able to respire anaerobically on nitrate as a terminal electron acceptor in the presence of glycerol-3-phosphate (G3P) as the sole carbon and phosphorus source and hydrolyzed sufficient phosphate to precipitate 95% total uranium after 120 hours in synthetic groundwater at pH 5.5. Synchrotron X-ray diffraction and X-ray absorption spectroscopy identified the mineral formed as chernikovite, a U(VI) autunite-type mineral. The results of this study suggest that in contaminated subsurfaces, such as at the ORFRC, where high concentrations of nitrate and low pH may limit uranium bioreduction, the biomineralization of U(VI) phosphate minerals may be a more attractive approach for in situ remediation providing that a source of organophosphate is supplied for bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号