首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes for seven putative serine proteases (ChpA–ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis ( Cmm ) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm . The genes chpA , chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant.  相似文献   

2.
The use of pathogen-free plant material is the main strategy for controlling bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. However, detection and isolation of this pathogen from seeds before field or greenhouse cultivation is difficult when the bacterium is at low concentration and associated microbiota are present. Immunomagnetic separation (IMS), based on the use of immunomagnetic beads (IMBs) coated with specific antibodies, was used to capture C. michiganensis subsp. michiganensis cells, allowing removal of non-target bacteria from samples before plating on non-selective medium. Different concentrations of IMBs and of two antisera were tested, showing that IMS with 10(6)IMBs/ml coated with a polyclonal antiserum at 1/3200 dilution recovered more than 50% of target cells from initial inocula of 10(3) to 10(0)CFU/ml. Threshold detection was lower than 10CFU/ml even in seed extracts containing seed debris and high populations of non-target bacteria. The IMS permitted C. michiganensis subsp. michiganensis isolation from naturally infected seeds with higher sensitivity and faster than direct isolation on the semiselective medium currently used and could become a simple viable system for routinely testing tomato seed lots in phytosanitary diagnostic laboratories.  相似文献   

3.
A transposon mutagenesis system for Clavibacter michiganensis subsp. michiganensis was developed based on antibiotic resistance transposons that were derived from the insertion element IS1409 from Arthrobacter sp. strain TM1 NCIB12013. As a prerequisite, the electroporation efficiency was optimized by using unmethylated DNA and treatment of the cells with glycine such that about 5 x 10(6) transformants per microg of DNA were generally obtained. Electroporation of C. michiganensis subsp. michiganensis with a suicide vector carrying transposon Tn1409C resulted in approximately 1 x 10(3) transposon mutants per pg of DNA and thus is suitable for saturation mutagenesis. Analysis of Tn1409C insertion sites suggests a random mode of transposition. Transposition of Tn1409C was also demonstrated for other subspecies of C. michiganensis.  相似文献   

4.
Tomato plants pre-inoculated with the avirulent strain NCPPB 3123 of Clavibacter michiganensis subsp. michiganensis (Cmm) were protected largely against challenge infection by virulent strains of Cmm. Effectiveness of this protective effect was mainly dependent on the inoculation sites, the bacterial cell concentration used for pre- and challenge inoculations, and the time interval between both inoculations. This defence reaction was systemic and stable throughout the whole growing season. Resistance can also be induced by pre-inoculation of heat-killed bacteria or application of isolated EPS of the strain 3123. Strain 3123 spreads out in tomato plants in the same manner as virulent Cmm isolates, but its colonization of tomato fruits and seeds was substantially lower. Papillary to spherical electron dense particles were observed at the tonoplast in parenchyma cells of the vascular system of tomato plants inoculated with the strain 3123. Numerous investigations carried out to examine the ability of 3123 to induce resistance in other host/pathogen-systems showed that it was only specific for tomato/Cmm.  相似文献   

5.
Aims: To evaluate the effectiveness of the optimized immunomagnetic separation (IMS)‐plating protocol in relation to other culture, serological and molecular techniques currently used for Clavibacter michiganensis subsp. michiganensis in seed‐testing laboratories. Methods and results: Bacterial suspensions, tomato seed extracts spiked with the pathogen and naturally infected seeds were IMS‐plated for the detection of C. m. subsp. michiganensis. These results were compared with plating on general (YPGA) and semiselective (mSCM) media, double‐antibody sandwich enzyme‐linked immunosorbent assay (DAS‐ELISA), immunofluorescent assay (IF) or polymerase chain reaction (PCR). Different seed lots and pathogen strains were also tested. IMS‐plating allowed the detection of less than 10 CFU ml?1 of pathogen in all assayed samples. The mSCM medium provided positive results for 10 CFU ml?1 in naturally infected seeds, but up to 14 days was necessary for the typical colonies of the target to be come visible. By serological techniques, 103 and up to 104 CFU ml?1 were detected by IF and ELISA, respectively. DNA extraction was required to obtain positive results by PCR in seed extracts containing 103 CFU ml?1 or more. Conclusions: Among the evaluated methods, IMS‐plating provided the best results regarding sensitivity and specificity for C. m. subsp. michiganensis detection, allowing the recovery of viable bacteria from seed extracts. Significance and impact of the study: IMS‐plating increases isolation rates of C. m. subsp. michiganensis and could improve standard protocols currently used for routine analysis.  相似文献   

6.
It has previously been shown that the tomato pathogen Clavibacter michiganensis subsp. michiganensis secretes a 14-kDa protein, C. michiganensis subsp. michiganensis AMP-I (CmmAMP-I), that inhibits growth of Clavibacter michiganensis subsp. sepedonicus, the causal agent of bacterial ring rot of potato. Using sequences obtained from tryptic fragments, we have identified the gene encoding CmmAMP-I and we have recombinantly produced the protein with an N-terminal intein tag. The gene sequence showed that CmmAMP-I contains a typical N-terminal signal peptide for Sec-dependent secretion. The recombinant protein was highly active, with 50% growth inhibition (IC50) of approximately 10 pmol, but was not toxic to potato leaves or tubers. CmmAMP-I does not resemble any known protein and thus represents a completely new type of bacteriocin. Due to its high antimicrobial activity and its very narrow inhibitory spectrum, CmmAMP-1 may be of interest in combating potato ring rot disease.  相似文献   

7.
Twelve phytopathogenic Clavibacter michiganensis subsp. michiganensis strains were introduced into non-sterile agricultural loam soil at an inoculum density of about log. 6.0 cfu g–1 dry weight soil. The soil samples were incubated at 22°C under a 12h light, 12h dark cycle and the population densities followed over a 30-day period by plating subsamples of serial dilutions of soil on Brain Heart Infusion agar amended with 0.5% (w/v) yeast extract and 30 g mL–1 nalidixic acid. In 5 soil samples C. michiganensis cfu were not detected after 30 days incubation. Initially, C. michiganensis cfu accounted for about 90% of the cfu recovered but decreased to less than 10% after 30 days. These results suggested that some C. michiganensis strains survive in this particular soil, while other strains exhibit poor survival and/or may be difficult to detect when present in low numbers.  相似文献   

8.
9.
Members of the actinomycete genus Clavibacter are known to produce antimicrobial compounds, but so far none of these compounds has been purified and characterized. We have isolated an antimicrobial peptide, michiganin A, from the tomato pathogen Clavibacter michiganensis subsp. michiganensis, using ammonium sulfate precipitation followed by cation-exchange and reversed-phase chromatography steps. Upon chemical derivatization of putative dehydrated amino acids and lanthionine bridges by alkaline ethanethiol, Edman degradation yielded sequence information that proved to be sufficient for cloning of the gene by a genome-walking strategy. The mature unmodified peptide consists of 21 amino acids, SSSGWLCTLTIECGTIICACR. All of the threonine residues undergo dehydration, and three of them interact with cysteines via thioether bonds to form methyllanthionine bridges. Michiganin A resembles actagardine, a type B lantibiotic with a known three-dimensional structure, produced by Actinoplanes liguriae, which is a filamentous actinomycete. The DNA sequence of the gene showed that the michiganin A precursor contains an unusual putative signal peptide with no similarity to well-known secretion signals and only very limited similarity to the (only two) available leader peptides of other type B lantibiotics. Michiganin A inhibits the growth of Clavibacter michiganensis subsp. sepedonicus, the causal agent of ring rot of potatoes, with MICs in the low nanomolar range. Thus, michiganin A may have some potential in biological control of potato ring rot.  相似文献   

10.
Contour-clamped homogeneous electric field gel analysis of genomic DNA of the plant pathogen Clavibacter michiganensis subsp. sepedonicus revealed the presence of a previously unreported extrachromosomal element. This new element was demonstrated to be a linear plasmid. Of 11 strains evaluated, all contained either a 90-kb (pCSL1) or a 140-kb (pCSL2) linear plasmid.  相似文献   

11.
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.  相似文献   

12.
AIM: To purify and analyse antimicrobial substances produced by the tomato pathogen Clavibacter michiganensis ssp. michiganensis (Cmm), with potential application in control of Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. METHODS AND RESULTS: After selection of a suitable producer and indicator strain, antimicrobial compounds were isolated using chromatographic techniques. The resulting preparations were analysed with respect to heat and protease sensitivity, amino acid composition, amino acid sequence and mass. Using this procedure we discovered one post-translationally modified 2145 Da peptide bacteriocin, one 14 kDa antimicrobial protein as well as low molecular weight (<1000 Da) antimicrobial compounds, putatively belonging to the tunicamycin family. CONCLUSIONS: Clavibacter michiganensis ssp. michiganensis produces various antibacterial substances that are active against Cms. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes the first attempt to characterize antimicrobial substances from Cmm at the molecular level. This is an important step towards investigation of the possible use of these compounds to control the potato ring rot pathogen.  相似文献   

13.
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes wilt and canker disease of tomato (Solanum lycopersicum). Mechanisms of Cmm pathogenicity and tomato response to Cmm infection are not well understood. To explore the interaction between Cmm and tomato, multidimensional protein identification technology (MudPIT) and tandem mass spectrometry were used to analyze in vitro and in planta generated samples. The results show that during infection Cmm senses the plant environment, transmits signals, induces, and then secretes multiple hydrolytic enzymes, including serine proteases of the Pat-1, Ppa, and Sbt familes, the CelA, XysA, and NagA glycosyl hydrolases, and other cell wall-degrading enzymes. Tomato induction of pathogenesis-related (PR) proteins, LOX1, and other defense-related proteins during infection indicates that the plant senses the invading bacterium and mounts a basal defense response, although partial with some suppressed components including class III peroxidases and a secreted serine peptidase. The tomato ethylene-synthesizing enzyme ACC-oxidase was induced during infection with the wild-type Cmm but not during infection with an endophytic Cmm strain, identifying Cmm-triggered host synthesis of ethylene as an important factor in disease symptom development. The proteomic data were also used to improve Cmm genome annotation, and thousands of Cmm gene models were confirmed or expanded.  相似文献   

14.
The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt, harbors two plasmids pCM1 (27.5 kb) and pCM2 (72 kb). After curing of the plasmids, bacterial derivatives were still proficient in the ability to colonize the host plant and in the production of exopolysaccharides but exhibited a reduced virulence. When one of the two plasmids is lost, there is a significant delay in the development of wilting symptoms after infection and a plasmid-free derivative is not able to induce disease symptoms. By cloning of restriction fragments of both plasmids in the plasmid-free strain CMM100, two DNA fragments which restored the virulent phenotype were identified. Further analysis suggested that a fragment of plasmid pCM1 encodes an endocellulase which is involved in the expression of the pathogenic phenotype.  相似文献   

15.
16.
Clavibacter michiganensis subsp. nebraskensis (CMN) is a gram-positive bacterium and an incitant of Goss's bacterial wilt and leaf blight or "leaf freckles" in corn. A population structure of a wide temporal and geographic collection of CMN strains (n = 131), originating between 1969 and 2009, was determined using amplified fragment length polymorphism (AFLP) analysis and repetitive DNA sequence-based BOX-PCR. Analysis of the composite data set of AFLP and BOX-PCR fingerprints revealed two groups with a 60% cutoff similarity: a major group A (n = 118 strains) and a minor group B (n = 13 strains). The clustering in both groups was not correlated with strain pathogenicity. Group A contained two clusters, A1 (n = 78) and A2 (n = 40), with a linkage of 75%. Group A strains did not show any correlation with historical, geographical, morphological, or physiological properties of the strains. Group B was very heterogeneous and eight out of nine clusters were represented by a single strain. The mean similarity between clusters in group B varied from 13% to 63%. All strains in group B were isolated after 1999. The percentage of group B strains among all strains isolated after 1999 (n = 69) was 18.8%. Implications of the findings are discussed.  相似文献   

17.
The viability of Clavibacter michiganensis subsp. michiganensis (Cmm) was determined by measuring the intracellular pH (pHin) as a viability parameter. This was based on the observation that growth of Cmm was inhibited at pH 5.5 and below. Therefore, viable cells should maintain their pHin above this pH value. The pHin of Cmm was determined using the fluorescent probe 5(and 6-)-carboxyfluorescein succinimidyl ester (cFSE). The pHin of Cmm cells exposed to acid treatments was determined using fluorescence spectrofluorometry, and for cells exposed to elevated temperatures, the pHin was determined using fluorescence spectrofluorometry and flow cytometry (FCM). A good correlation was found between the presence of a pH gradient and the number of colony-forming units (cfu) observed in plate counts. However, with the spectrofluorometry technique, the analysis is based on the whole cell population and the detection sensitivity of this technique is rather low, i.e., cell numbers of at least 107 cfu ml-1 are needed for the analysis. Using FCM, heat-treated and non-treated Cmm cells could be distinguished based on the absence and presence of a pH gradient, respectively. The major advantage of FCM is its high sensitivity, allowing analysis of microbial populations even at low numbers, i.e., 102-103 cfu ml-1.  相似文献   

18.
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible.  相似文献   

19.
Detection of the bacterial ring pot pathogen ( Clavibacter michiganensis subsp. spedonicus ) in seed potato lots by laboratory indexing complements visual inspection. The probability of detecting symptomless infections is a function of sample size and incidence of infection. We determined the incidence of asymptomatic stem and tuber infections in four potato cultivars at three levels of inoculum. At the high inoculum level, 51–93% of stems were infected at 80 days after planting, and 10–59% of the tubers were infected at harvest. The effect of the different percentages of infected stems and tubers on the probability of detection for simple random sampling was calculated for a constant sample size. The actual detection levels for two cultivars planted in field plots with predetermined incidence levels of ring rot infected plants were reasonably close to predicted probabilities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号