首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The reactive stromal phenotype is an important factor for prostate cancer progression and may be a new target for treatment and prevention. A new high efficiency preclinical protocol, the EPI bioassay, reflects the interaction of endocrine, paracrine and immune, (EPI) factors on induced androgen metabolism in human prostate reactive stroma. The bioassay is based on co-culturing human primary prostate stromal cells and LAPC-4 prostatic adenocarcinoma cells in a downscaled format of 96-well-plates for testing multiple doses of multiple target compounds. Metabolism of dehydroepiandrosterone (DHEA) with or without TGFβ1-induced stimulation (D+T) of the reactive stroma phenotype was assessed by increased testosterone in the media and PSA production of the epithelial prostate cancer cells. Using the non-metabolizable androgen R1881, effects from direct androgen action were distinguished from stromal androgen production from DHEA. Stromal cell androgenic bioactivity was confirmed using conditioned media from D+T-treated stromal cell monocultures in an androgen-inducible AR screening assay. We further showed that both agonists to estrogen receptor (ER), DPN (ERβ) and PPT (ERα), as well as estrogenic natural compounds including soy isoflavones attenuated D+T-induced PSA production. Studies with the pure ER agonists showed that activating either ERα or ERβ could inhibit both D+T-mediated and R1881-mediated PSA production with the D+T effect being more pronounced. In conclusion, natural compounds with estrogenic activity and pure ER agonists are very potent inhibitors of stromal conversion of DHEA to androgenic metabolites. More studies are needed to characterize the mechanisms involved in estrogenic modulation of the endocrine-immune-paracrine balance of the prostate microenvironment.  相似文献   

2.
A versatile and high yielding synthesis of novel androgen receptor (AR) antagonists is presented. Using this methodology, six 1,4-substituted-1,2,3-triazole derived bicalutamide mimics were synthesised in five steps and in isolated overall yields from 41% to 85%. Evaluation of these compounds for their anti-proliferative properties against androgen dependent (LNCaP) and independent (PC-3) cells showed promising IC50 values of 34–45 μM and 29–151 μM, respectively. The data suggest that the latter compounds may be an excellent starting point for the development of prostate cancer therapeutics for both androgen dependent and independent forms of this disease. Docking of these compounds (each enantiomer) in silico into the T877A mutated androgen receptor, as possessed by LNCaP cells, was also undertaken.  相似文献   

3.
It is well-known that 1α,25-dihydroxyvitamin D(3) and analogs exert anti-proliferative and pro-differentiating effects and these compounds have therefore been proposed to be of potential use as anti-cancer agents. Due to its effects on aromatase gene expression and enzyme activity, 1α,25-dihydroxyvitamin D(3) has been proposed as an interesting substance in breast cancer treatment and prevention. In the present study, we have examined the effects of 1α,25-dihydroxyvitamin D(3) on estrogen and androgen metabolism in adrenocortical NCI-H295R cells, breast cancer MCF-7 cells and prostate cancer LNCaP cells. The NCI-H295R cell line has been proposed as a screening tool to study endocrine disruptors. We therefore studied whether this cell line reacted to 1α,25-dihydroxyvitamin D(3) treatment in the same way as cells from important endocrine target tissues. 1α,25-Dihydroxyvitamin D(3) exerted cell line-specific effects on estrogen and androgen metabolism. In breast cancer MCF-7 cells, aromatase gene expression and estradiol production were decreased, while production of androgens was markedly increased. In NCI-H295R cells, 1α,25-dihydroxyvitamin D(3) stimulated aromatase expression and decreased dihydrotestosterone production. In prostate cancer LNCaP cells, aromatase expression increased after the same treatment, as did production of testosterone and dihydrotestosterone. In summary, our data show that 1α,25-dihydroxyvitamin D(3) exerts tissue-specific effects on estrogen and androgen production and metabolism. This is important knowledge about 1α,25-dihydroxyvitamin D(3) as an interesting substance for further research in the field of breast cancer prevention and treatment. Furthermore, the observed cell line-specific effects are of importance in the discussion about NCI-H295R cells as a model for effects on estrogen and androgen metabolism.  相似文献   

4.
The identification of agents with antiproliferative activity against endothelial cells has significant value for the treatment of many angiogenesis-dependent pathologies. Herein, we describe the discovery of a series of thalidomide analogues possessing inhibitory effects against both endothelial and prostate cancer cells. More specifically, several analogues exhibited low micromolar to mid-nanomolar potency in the inhibition of human microvascular endothelial cell (HMEC) proliferation, both in the presence and absence of vascular endothelial growth factor (VEGF), with the tetrafluorophthalimido class of compounds demonstrating the greatest potency. Additionally, all the compounds were screened against two different androgen independent prostate cancer cell lines (PC-3 and DU-145). Again, the tetrafluorophthalimido analogues exhibited the greatest effect with GI(50) values in the low micromolar range. Thalidomide was found to demonstrate selective inhibition of androgen receptor positive LNCaP prostate cancer cells. Furthermore, we showed that, as an example, tetrafluorophthalimido analogue 19 was able to completely inhibit the prostate specific antigen (PSA) secretion by the LNCaP cell line, while thalidomide demonstrated a 70% inhibition. We have also demonstrated that a correlation exists between HMEC and prostate cancer cell proliferation for this structural class. Altogether, our study suggests that these analogues may serve as promising leads for the development of agents that target both androgen dependent and independent prostate cancer and blood vessel growth.  相似文献   

5.
The last decade has seen explosive growth in the therapy of prostate cancer. Three areas of therapeutics are emerging: 1) new compounds with novel uses; 2) available compounds with new applications; and 3) new compounds applied to established indications. The novel compounds target specific receptor sites of cancer pathways and attack cancer cells with less effect on normal tissue. Earlyphase trials with compounds targeting the endothelin-A and EGF receptors have shown encouraging results in hormone-refractory prostate cancer. In addition, the Early Prostate Cancer Trial of over 8000 men is currently underway to determine the benefit of adjuvant androgen ablation with bicalutamide in men with localized prostate cancer. Early results show a significant 42% reduction in the progression of the disease in the bicalutamide treatment arm. Further, in large, phase 3 clinical trials in patients needing androgen ablation, the GnRH antagonist abarelix caused no testosterone surge and demonstrated a significantly more rapid decline in serum testosterone to the castrate level than did an LHRH agonist analogue. Abarelix should thus have application as a monotherapy in patients who need a rapid onset of action or are at high risk of complications from the clinical flare seen with LHRH agonists. Abarelix also uniquely caused a sustained decline in serum FSH levels, which have been shown in vitro to stimulate prostate cancer cell growth. If these favorable effects can be duplicated in patients, abarelix might also offer a survival benefit.  相似文献   

6.
前列腺癌是男性最常被诊断出的癌症之一,而雄激素受体(androgen receptor, AR)是前列腺癌治疗的重要靶标。现有的AR拮抗剂在长期使用后通常由于多种原因而失效。因此,新型AR拮抗剂的开发仍具有重要的意义。一系列四氢苯并噻唑类化合物,通过 α,β-环氧环己酮与适当的硫脲的缩合反应被合成。其中,多个化合物在酵母双杂交系统中表现出强于或相当于氟他胺的雄激素受体拮抗活性(IC50≤2.48 mmol/L)。进一步的细胞活力试验表明,这些活性化合物有效地抑制了雄激素敏感的LNCaP细胞的增殖(IC50值17.1~41.4 mmol/L)。分子对接研究提供了化合物与受体相互作用的可能模型,较好地符合了初步的构效关系研究。总之,本文的研究证明,四氢苯并噻唑可以作为有效的AR调节剂,可能代表了一种有前景的先导化合物,有助于进一步开发出新型的更加强效的雄激素受体拮抗剂。  相似文献   

7.
8.
A series of 4-phenylpyrrole derivatives D were designed, synthesized, and evaluated for their potential as novel orally available androgen receptor antagonists therapeutically effective against castration-resistant prostate cancers. 4-Phenylpyrrole compound 1 exhibited androgen receptor (AR) antagonistic activity against T877A and W741C mutant-type ARs as well as wild-type AR. An arylmethyl group incorporated into compound 1 contributed to enhancement of antagonistic activity. Compound 4n, 1-{[6-chloro-5-(hydroxymethyl)pyridin-3-yl]methyl}-4-(4-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carbonitrile exhibited inhibitory effects on tumor cell growth against the bicalutamide-resistant LNCaP-cxD2 cell line as well as the androgen receptor-dependent JDCaP cell line in a mouse xenograft model. These results demonstrate that this series of pyrrole compounds are novel androgen receptor antagonists with efficacy against prostate cancer cells, including castration-resistant prostate cancers such as bicalutamide-resistant prostate cancer.  相似文献   

9.
To enhance the structural diversity of isoflavonoids and provide more derivatives for the biological screening, a semisynthetic mixture was generated by diversification of the crude extract of Radix puerariae (Pueraria montana var. lobata) through the chemical reaction with hydrazine hydrate. Eleven 3,4‐diarylpyrazoles ( 1 – 11 ) and two 5‐phenyl‐6‐benzyldihydropyridazinones ( 12 and 13 ) were isolated from the semisynthetic mixture, and their structures were identified by spectroscopic methods in combination with X‐ray crystallographic analysis. Among them, nine compounds ( 5 – 13 ) were new derivatives. All the compounds were evaluated on the inhibitory activities against the prostate cancer cell lines LNCaP and PC3. Compounds 12 and 13 were found to exhibit much more potent inhibitory activities against the androgen dependent LNCaP cells than the androgen independent PC3 cells. Rapid synthesis of new 3,4‐diarylpyrazoles and two 5‐phenyl‐6‐benzyldihydropyridazinones with significant biological activity highlights the great potential of one‐pot combinatorial modification for the diversification of natural products.  相似文献   

10.
11.
12.
Dehydroepiandrosterone (DHEA), the most abundant steroid in human circulating blood, is metabolized to sex hormones and other C19-steroids. Our previous collaborative study demonstrated that androst-5-ene-3beta,17beta-diol (Adiol) and androst-4-ene-3,17-dione (Adione), metabolites of DHEA, can activate androgen receptor (AR) target genes. Adiol is maintained at a high concentration in prostate cancer tissue; even after androgen deprivation therapy and its androgen activity is not inhibited by the antiandrogens currently used to treat prostate cancer patients. We have synthesized possible metabolites of DHEA and several synthetic analogues and evaluated their role in androgen receptor transactivation to identify AR modulators. Steroids with low androgenic potential in PC-3 cell lines were evaluated for anti-dihydrotestosterone (DHT) and anti-Adiol activity. We discovered three potent antiandrogens: 3beta-acetoxyandrosta-1,5-diene-17-one 17-ethylene ketal (ADEK), androsta-1,4-diene-3,17-dione 17-ethylene ketal (OAK), and 3beta-hydroxyandrosta-5,16-diene (HAD) that antagonized the effects of DHT as well as of Adiol on the growth of LNCaP cells and on the expression of prostate-specific antigen (PSA). In vivo tests of these compounds will reveal their potential as potent antiandrogens for the treatment of prostate cancer.  相似文献   

13.
The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgen sensitivity.  相似文献   

14.
We investigated the effects of androgen receptor (AR) down regulation with a small interference RNA molecule (siRNA_AR(start)) on androgen sensitive LNCaP and androgen independent LNCaPabl prostate cancer cells, the latter representing an in vitro model for the development of therapy resistance in prostate cancer. Although LNCaPabl cells express increased levels of AR in comparison with androgen sensitive LNCaP cells, the protein was significantly down regulated in response to siRNA_AR(start) treatment. This AR down regulation resulted in a marked cell growth inhibition in both cell lines. By contrast, DU-145 prostate cancer cells, which lack AR expression, were not inhibited by the siRNA_AR(start). In consequence to AR down regulation, both cell lines, LNCaP and LNCaPabl, shared a highly similar gene expression profile in terms of major changes in cell cycle regulatory genes. The cell cycle inhibitor p21(Waf1/Cip1) as well as cyclin D1 were significantly up regulated by siRNA_AR(start) treatment, considering a switch in cyclin expression towards cell cycle retardation. Control molecules had moderate effects on cell proliferation and gene expression, respectively. In summary, we found that AR inhibition with siRNA induces cell growth retardation in androgen sensitive as well as in androgen independent prostate cancer cells and thus may represent an interesting approach to combat hormone-refractory prostate cancer.  相似文献   

15.
Determining the source of regenerated luminal epithelial cells in the adult prostate during androgen deprivation and replacement will provide insights into the origin of prostate cancer cells and their fate during androgen deprivation therapy. Prostate stem cells in the epithelial layer have been suggested to give rise to luminal epithelium. However, the extent of stem cell participation to prostate regrowth is not clear. In this report, using prostate-specific antigen-CreER(T2)-based genetic lineage marking/tracing in mice, preexisting luminal epithelial cells were shown to be a source of regenerated luminal epithelial cells in the adult prostate. Prostatic luminal epithelial cells could survive androgen deprivation and were capable of proliferating upon androgen replacement. Prostate cancer cells, typically exhibiting a luminal epithelial phenotype, may retain this intrinsic capability to survive and regenerate in response to changes in androgen signaling, providing part of the mechanism for the ultimate failure of androgen deprivation therapy in prostate cancer.  相似文献   

16.
Prostate cancer progresses from a hormone-sensitive, androgen-dependent stage to a hormone-refractory, androgen-independent tumor. The androgen receptor pathway functions in these androgen-independent tumors despite anti-androgen therapy. In our LAPC-4 prostate cancer model, androgen-independent sublines expressed higher levels of the HER-2/neu receptor tyrosine kinase than their androgen-dependent counterparts. Forced overexpression of HER-2/neu in androgen-dependent prostate cancer cells allowed ligand-independent growth. HER-2/neu activated the androgen receptor pathway in the absence of ligand and synergized with low levels of androgen to 'superactivate' the pathway. By modulating the response to low doses of androgen, a tyrosine kinase receptor can restore androgen receptor function to prostate cancer cells, a finding directly related to the clinical progression of prostate cancer.  相似文献   

17.
Shen T  Wan W  Yuan H  Kong F  Guo H  Fan P  Lou H 《Phytochemistry》2007,68(9):1331-1337
A cycloartane-type triterpenoid (1), an aliphatic alcohol glycoside (2), an eudesmane-type sesquiterpenoid (3), and a guaiane-type sesquiterpenoid (4) were isolated from the resinous exudates of Commiphora opobalsamum along with six known sesquiterpenoids (5-10). Their structures were established by extensive analysis of their 1D and 2D NMR spectroscopic data and chemical methods. The isolated compounds 1-3 and 5-9 were tested against human prostate cancer cell PC 3 and LNCaP. Among them, 1 and 2 showed moderate antiproliferative effects on human prostate cancer cell lines with IC50 values ranging from 5.7 to 23.6 microM; they were also able to inhibit the expression of androgen receptor (AR) in LNCaP cells. The six sesquiterpenoids were inactive in the bioassays.  相似文献   

18.
Androgen ablation therapy is currently the primary treatment for metastatic prostate cancer. Unfortunately, in nearly all cases, androgen ablation fails to permanently arrest cancer progression. As androgens like testosterone are withdrawn, prostate cancer cells lose their androgen sensitivity and begin to proliferate without hormone growth factors. In this study, we constructed and analyzed a mathematical model of the integration between hormone growth factor signaling, androgen receptor activation, and the expression of cyclin D and Prostate-Specific Antigen in human LNCaP prostate adenocarcinoma cells. The objective of the study was to investigate which signaling systems were important in the loss of androgen dependence. The model was formulated as a set of ordinary differential equations which described 212 species and 384 interactions, including both the mRNA and protein levels for key species. An ensemble approach was chosen to constrain model parameters and to estimate the impact of parametric uncertainty on model predictions. Model parameters were identified using 14 steady-state and dynamic LNCaP data sets taken from literature sources. Alterations in the rate of Prostatic Acid Phosphatase expression was sufficient to capture varying levels of androgen dependence. Analysis of the model provided insight into the importance of network components as a function of androgen dependence. The importance of androgen receptor availability and the MAPK/Akt signaling axes was independent of androgen status. Interestingly, androgen receptor availability was important even in androgen-independent LNCaP cells. Translation became progressively more important in androgen-independent LNCaP cells. Further analysis suggested a positive synergy between the MAPK and Akt signaling axes and the translation of key proliferative markers like cyclin D in androgen-independent cells. Taken together, the results support the targeting of both the Akt and MAPK pathways. Moreover, the analysis suggested that direct targeting of the translational machinery, specifically eIF4E, could be efficacious in androgen-independent prostate cancers.  相似文献   

19.
Abnormal differentiation in epithelial stem cells or their immediate proliferative progeny, the transiently amplifying population (TAP), may explain malignant pathogenesis in the human prostate. These models are of particular importance as differing sensitivities to androgen among epithelial cell subpopulations during differentiation are recognised and may account for progression to androgen independent prostate cancer. Androgens are crucial in driving terminal differentiation and their indirect effects via growth factors from adjacent androgen responsive stroma are becoming better characterised. However, direct effects of androgen on immature cells in the context of a prostate stem cell model have not been investigated in detail and are studied in this work. In alpha2beta1hi stem cell enriched basal cells, androgen analogue R1881 directly promoted differentiation by the induction of differentiation-specific markers CK18, androgen receptor (AR), PSA and PAP. Furthermore, treatment with androgen down-regulated alpha2beta1 integrin expression, which is implicated in the maintenance of the immature basal cell phenotype. The alpha2beta1hi cells were previously demonstrated to lack AR expression and the direct effects of androgen were confirmed by inhibition using the anti-androgen bicalutamide. AR protein expression in alpha2beta1hi cells became detectable when its degradation was repressed by the proteosomal inhibitor MG132. Stratifying the alpha2beta1hi cells into stem (CD133(+)) and transient amplifying population (TAP) (CD133(-)) subpopulations, AR mRNA expression was found to be restricted to the CD133(-) (TAP) cells. The presence of a functional AR in the TAP, an androgen independent subpopulation for survival, may have particular clinical significance in hormone resistant prostate cancer, where both the selection of immature cells and functioning AR regulated pathways are involved.  相似文献   

20.
ErbB-3, an ErbB receptor tyrosine kinase, has been implicated in the pathogenesis of several malignancies, including prostate cancer. We found that ErbB-3 expression was up-regulated in prostate cancer cells within lymph node and bone metastases. Despite being a plasma membrane protein, ErbB-3 was also detected in the nuclei of the prostate cancer cells in the metastatic specimens. Because most metastatic specimens were from men who had undergone androgen ablation, we examined the primary tumors from patients who have undergone hormone deprivation therapy and found that a significant fraction of these specimens showed nuclear localization of ErbB3. We thus assessed the effect of androgens and the bone microenvironment on the nuclear translocation of ErbB-3 by using xenograft tumor models generated from bone-derived prostate cancer cell lines, MDA PCa 2b, and PC-3. In subcutaneous tumors, ErbB-3 was predominantly in the membrane/cytoplasm; however, it was present in the nuclei of the tumor cells in the femur. Castration of mice bearing subcutaneous MDA PCa 2b tumors induced a transient nuclear translocation of ErbB-3, with relocalization to the membrane/cytoplasm upon tumor recurrence. These findings suggest that the bone microenvironment and androgen status influence the subcellular localization of ErbB-3 in prostate cancer cells. We speculate that nuclear localization of ErbB-3 may aid prostate cancer cell survival during androgen ablation and progression of prostate cancer in bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号