首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequences from mitochondrial (12S rRNA) and nuclear (growth hormone receptor) genes were used to investigate phylogenetic relationships among South American hystricognath rodents of the superfamily Octodontoidea, with special emphasis on the family Octodontidae. Relationships among most taxa were well resolved by a combined analysis of both genes, and the molecular phylogeny was used to address several long-standing phylogenetic problems. The family Abrocomidae was the most basal lineage within the superfamily Octodontoidea, sensu stricto, and the family Ctenomyidae was sister to the family Octodontidae, followed by a monophyletic group containing the families Myocastoridae and Echimyidae. A basic dichotomy was observed within the family Octodontidae. The Argentine desert specialists, Tympanoctomys and Octomys, grouped separate from Octodontomys, which was sister to a clade containing a monophyletic Octodon and a clade represented by species of Aconaemys and Spalacopus. Aconaemys was paraphyletic relative to Spalacopus. The phylogeny was used as an interpretive framework for an examination of variation in several non-molecular characters. The primitive diploid number for most of the octodontoids was determined to be between 46 and 56, and the primitive genome size 8.2 pg. Members of the Octodontidae appeared to be derived from an ancestral stock occupying lower elevations in scrub habitat. Furthermore, estimates of divergence time from the molecular data provided a temporal perspective for changes in plant communities, which demonstrated turnover and diversification in response to climatic and geologic events occurring in the Miocene through the Pleistocene.  相似文献   

2.
Caviomorphs (South American hystricognaths) are recorded in the continent since the middle Eocene. The middle Eocene–early Oligocene is considered a key moment for their evolutionary history because by the early Oligocene they were differentiated into four superfamilies: Octodontoidea, Cavioidea, Chinchilloidea and Erethizontoidea. Due to their generalized dental patterns and abundance in the fossil record, Octodontoidea are interesting for analysing the origin and early history of caviomorphs. The phylogenetic relationships of the earliest octodontoids are studied herein. Results confirmed a basal caviomorph diversification in the middle Eocene (c. 45 Mya), with one lineage leading to Pan‐Octodontoidea, and another leading to Erethizontoidea, Cavioidea and Chinchilloidea, which is not in accordance with analyses based on molecular data. Three major radiations were identified: the first one (late Eocene?/early Oligocene?) occurred in low latitudes with the differentiation of Pan‐Octodontoidea and the earliest crown‐Octodontoidea. The second radiation (late Oligocene) was a large‐scale South American event; in the southernmost part of the continent it is recognized as the first Patagonian octodontoid radiation, which provided the characteristic high morphological disparity of the superfamily. The third radiation (late Miocene) is characterized by the replacement of ‘old’ by ‘modern’ octodontoids; the nature of this third event needs to be study in a broader taxonomic context. © 2015 The Linnean Society of London  相似文献   

3.
Echimyidae is a species-rich clade of Neotropical rodents, which diversified in association with forested biomes. Since the late Miocene, a few lineages from southern South America have been adapted to open environments. Eumysops is one of these southern echimyids, and its peculiar craniomandibular morphology has been assumed to be a result of adaptation to open environments. We performed a geometric morphometric analysis of craniomandibular shape variation to explore whether, as suspected, Eumysops is divergent from other echimyids and octodontoids. In addition, we explored whether deterministic factors driven by different ecological dimensions can explain the diversification of shape among octodontoids. We found that craniomandibular shape variation in octodontoids was related to ecological variables. Comparing competing evolutionary models suggested that the input of selective factors play a key role in octodontoid craniomandibular shape diversification; habitat and habits were found to be the most influential factors. In the analysed morphospaces, Eumysops was located distant from other echimyids due to its distinctive traits, especially wide and posteriorly displaced orbits, and related low craniomandibular joint. Divergent orbits and resulting wider panoramic vision support the interpretation of Eumysops as an open-habitat specialist echimyid. But what is more relevant, is that Eumysops occupied a sector of the octodontoid cranial morphospace not filled by living representatives; this highlights the contribution of fossils in providing key information on the specialization boundaries explored by a clade throughout its history.  相似文献   

4.
Fabre, P.‐H., Galewski, T., Tilak, M.‐k. & Douzery, E.J.P. (2012) Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. —Zoologica Scripta, 00, 000–000. We investigated the phylogenetic relationships of 14 Echimyidae (spiny rats), one Myocastoridae (nutrias) and one Capromyidae (hutias) genera based on three newly sequenced nuclear genes (APOB, GHR and RBP3) and five previously published markers (the nuclear RAG1 and vWF, and the mitochondrial cytochrome b, 12S rRNA and 16S rRNA). We recovered a well‐supported phylogeny within the Echimyidae, although the evolutionary relationships among arboreal echimyid taxa remain unresolved. Molecular divergence times estimated using a Bayesian relaxed molecular clock suggest a Middle Miocene origin for most of the extant echimyid genera. Echimyidae seems to constitute an example of evolutionary radiation with high species diversity, yet they exhibit only narrow skull morphological changes, and the arboreal and terrestrial taxa are shown to retain numerous plesiomorphic features. The most recent common ancestor of spiny rats is inferred to be a ground‐dwelling taxon that has subsequently diverged into fossorial, semiaquatic and arboreal habitats. The arboreal clade polytomy and ancestral character estimations suggest that the colonization of the arboreal niche constituted the keystone event of the echimyid radiation. However, biogeographical patterns suggest a strong influence of allopatric speciation in addition to ecology‐driven diversification among South American spiny rats.  相似文献   

5.
The superfamilies of Elateriformia have been in a state of flux since their establishment. The recent classifications recognize Dascilloidea, Buprestoidea, Byrrhoidea and Elateroidea. The most problematic part of the elateriform phylogeny is the monophyly of Byrrhoidea and the relationships of its families. To investigate these issues, we merged more than 500 newly produced sequences of 18S rRNA, 28S rRNA, rrnL mtDNA and cox1 mtDNA for 140 elateriform taxa with data from GenBank. We assembled an all‐taxa (488 terminals) and a pruned data set, which included taxa with full fragment representation (251 terminals); both were aligned in various programs and analysed using maximum‐likelihood criterion and Bayesian inference. Most analyses recovered monophyletic superfamilies and broadly similar relationships; however, we obtained limited statistical support for the backbone of trees. Dascilloidea were sister to the remaining Elateriformia, and Elateroidea were sister to the clade of byrrhoid lineages including Buprestoidea. This clade mostly consisted of four major lineages, that is (i) Byrrhidae, (ii) Dryopidae + Lutrochidae, (iii) Buprestoidea (Schizopodidae sister to Buprestidae) and (iv) a clade formed by the remaining byrrhoid families. Buprestoidea and byrrhoid lineages, with the exception of Byrrhidae and Dryopidae + Lutrochidae, were usually merged into a single clade. Most byrrhoid families were recovered as monophyletic. Callirhipidae and Eulichadidae formed independent terminal lineages within the Byrrhoidea–Buprestoidea clade. Paraphyletic Limnichidae were found in a clade with Heteroceridae and often also with Chelonariidae. Psephenidae, represented by Eubriinae and Eubrianacinae, never formed a monophylum. Ptilodactylidae were monophyletic only when Paralichas (Cladotominae) was excluded. Elmidae regularly formed a clade with a bulk of Ptilodactylidae; however, elmid subfamilies (Elminae and Larainae) were not recovered. Despite the densest sampling of Byrrhoidea diversity up to date, the results are not statistically supported and resolved only a limited number of relationships. Furthermore, questions arose which should be considered in the future studies on byrrhoid phylogeny.  相似文献   

6.
Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)   总被引:1,自引:0,他引:1  
The echimyid rodents are the most diverse group of Neotropical hystricognaths, with approximately 40 extant and fossil genera. Craniodental characters are proposed in order to formulate hypotheses of phylogenetic relationships within the Echimyidae. A data matrix of 54 taxa and 50 characters is constructed and submitted to parsimony analyses using PAUP and WinClada programs. Analysis of the complete data set results in 47 448 most parsimonious trees 107 steps long. These trees are summarized in a strict consensus tree, which is taken as the main phylogenetic hypothesis resulting from this study. The monophyly of several currently recognized supraspecific taxa is not corroborated. These are: the subfamilies Eumysopinae, Echimyinae, Myocastorinae and Adelphomyinae; and the genera Proechimys , Echimys and Makalata . Conversely, the monophyly of Dactylomyinae and Trinomys is supported. New associations are proposed: (1) a clade comprising the extant Carterodon , Clyomys and Euryzygomatomys and the fossil Pampamys and Theridomysops placed at the base of the crown-group Echimyidae; (2) a clade uniting Proechimys , Hoplomys and Trinomys , which is the sister-taxon of (3) a clade including Mesomys , Lonchothrix , Myocastor and a clade with extant dactylomyines and echimyines and associated fossil taxa. Based on this phylogenetic hypothesis, patterns of tooth evolution in Echimyidae are discussed, and minimum ages for the divergence events within the family are estimated.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 142 , 445–477.  相似文献   

7.
We analyzed the phylogenetic relationships of echimyid genera based on sequences of the cytochrome b, 12S, and 16S mitochondrial genes. Our results corroborate the monophyly of Octodontoidea and the rapid diversification of echimyid rodents as previously proposed. The analyses indicate that the family Echimyidae, including Myocastor to the exclusion of Capromys, is paraphyletic, since Capromys and Myocastor are well-supported sister-taxa. We therefore suggest the inclusion of both Capromys and Myocastor in the family Echimyidae. Five other suprageneric clades are well supported: Dactylomys+Kannabateomys, Euryzygomatomys+Clyomys, Proechimys+Hoplomys, Mesomys+Lonchothrix, and Makalata+(Echimys+Phyllomys). Trinomys and Thrichomys have no clear close relatives, and Isothrix emerged as sister to Mesomys+Lonchothrix, but with no support. We suggest that most of the cladogenesis leading to the extant echimyid genera probably occurred during the Late Miocene, about eight million years ago.  相似文献   

8.
Octodontoidea is the most species-rich clade among hystricomorph rodents, and has a fossil record going back to at least the late Oligocene. Affinities of fossils previous to the late Miocene differentiation of the extant families Abrocomidae, Echimyidae and Octodontidae are controversial, essentially because these fossils may share few apomorphies with modern species. In fact, pre-late Miocene representatives of Abrocomidae had not been recognised until very recently. Here we revise the early Miocene genus Acarechimys, originally assigned to Echimyidae, and alternatively to stem Octodontoidea or to Octodontidae. A systematic and parsimony-based phylogenetic analysis of the species traditionally included in Acarechimys showed that this genus is part of stem Abrocomidae. These results are primarily supported by morphology of the mandible and lower molars. Acarechimys is here restricted to three species, A. minutus, A. pulchellus and Acarechimys pascuali sp. nov., while another species, A. constans, is here transferred to a new abrocomid genus. The remaining species were nested within Octodontidae. According to these results, Abrocomidae might have been as diverse as its sister clade Octodontidae-Echimyidae during the late Oligocene–early Miocene. Extinction of this diversity would have resulted in marked loss of evolutionary history, with extant abrocomids being currently restricted to late-diverged euhypsodont representatives.  相似文献   

9.
Octodontoidea is the most species-rich clade among hystricomorph rodents. Based on a combined parsimony analysis of morphological and molecular data of extinct and extant species, we analyze the history of South American octodontoids and propose ages of divergence older than interpreted so far. Early Abrocomidae are recognized for the first time, and a new definition of the family is provided. Traditionally accepted fossil-based times of origin for the southern clades are reinterpreted as later stages of differentiation markedly uncoupled from the origin, differentiation implying specializations for open environments as shown in a morphospace of skull variation. Origin of crown groups is also strongly uncoupled from origin of clades as a consequence of extinction of deep lineages. In the resulting diversity pattern of modern southern clades of octodontoids, the combination of greater disparity, less content of evolutionary history, and lower taxonomic diversity, compared to their northern counterparts, appears at first counterintuitive. We propose that primary components of diversity derived from evolutionary transformation or anagenesis, on the one hand, and from cladogenesis and extinction, on the other, should not be considered associated, or at least not necessarily. Certain patterns of relationships between these distinct components could be driven by environmental dynamics. Like environments, octodontoid diversity would have been more stable in northern South America, whereas in the south, both strong adaptive change and extinction would have been triggered by emerging derived environments.  相似文献   

10.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

11.
The Ctenohystrica is one of the three major lineages of rodents and contains diverse forms related to gundis, porcupines, and guinea pigs. Phylogenetic analyses of this group using mitochondrial and nuclear gene sequences confirm the monophyly of the infraorder Hystricognathi and most of its recognized subclades, including both the Neotropical caviomorphs and the African phiomorphs, which are recovered as sister groups. Molecular timetrees calibrated with 22 securely placed fossils indicate that hystricognath superfamilies originated in the Eocene and Oligocene and most families had appeared by the end of the Oligocene, ~23 Mya. Divergences leading to hystricognath genera took place in the Miocene and Pliocene, with a single exception. The naked mole‐rat (Heterocephalus) diverged from other African mole‐rats (Bathyergidae) in the early Oligocene (~31.2 Mya), when the four caviomorph superfamilies (Erethizonoidea and Cavioidea at 32.4 Mya, Chinchilloidea and Octodontoidea at 32.8 Mya) were first appearing in South America. The extended independent evolution of Heterocephalus suggested by this analysis prompted a closer examination of mole‐rat characters. Heterocephalus indeed shares many characters with bathyergids, befitting their joint membership in the parvorder Bathyergomorphi and superfamily Bathyergoidea as well as their shared exploitation of subterranean lifestyles. However, a diverse array of cranial, dental, postcranial, external, and ecological characters distinguishes Heterocephalus from other African mole‐rats. These differences equal or exceed those used to diagnose caviomorph families and justify recognizing the naked mole‐rat in its own family, Heterocephalidae Landry, 1957. This taxonomic arrangement poses questions for the inter‐relationships of fossil and extant mole‐rats and brings time equivalence to the ranks assigned to the major clades of hystricognaths. © 2014 The Linnean Society of London  相似文献   

12.
13.
A new nomenclature of the lung lobes and of the bronchial tree is presented, with which the lungs in 40 species of 11 rodent families are described. Whole, fixed lungs and silicone casts of the bronchial tree are tested for 23 characters, based on the distribution of lung lobes, the number and geometry of first order bronchi, the pulmonary blood supply, and lung symmetry. Ten lung morphotypes are recognized, seven of them representing one or more families: Castor type (Castoridae), Cryptomys type (Bathyergidae), Ctenodactylus type (Ctenodactylidae), Eliomys type (Gliridae), Myocastor type (Myocastoridae), Octodon type (Octodontidae and Echimyidae) and Rattus type (Sciuridae, Muridae pt. and Dipodidae). The Hydromys type is found only in Hydromys chrysogaster (Muridae), while Galea type A and B both appear in Galea musteloides (Caviidae). The data are phylogenetically analyzed by the program PAUP 4.0 using as outgroup Lagomorpha or Insectivora. On the species level, there are no well-resolved cladograms. On the family level, the cladograms do not contradict traditional rodent systematics with one exception: the Caviidae do not fall within Caviomorpha or even within the Hystricomorpha, but form a sister group to Dipodidae (Myomorpha). This appears to be a result of convergence. The lungs of Gliridae are more similar to those of Muridae than to those of Sciuridae. Included in the ingroup, Oryctolagus (Lagomorpha) forms a clade with Caviidae + Dipodidae. Thus, the "Glires hypothesis" is neither supported nor refuted.  相似文献   

14.
Most Neotropical lowland forest taxa occur exclusively on one side of the Andes despite the availability of appropriate habitat on both sides. Almost all molecular phylogenies and phylogenetic analyses of species assemblages (i.e. area cladograms) have supported the hypothesis that Andean uplift during the Late Pliocene created a vicariant barrier affecting lowland lineages in the region. However, a few widespread plant and animal species occurring in lowland forests on both sides of the Andes challenge the generality of this hypothesis. To understand the role of the Andes in the history of such organisms, we reconstructed the phylogeographic history of a widespread Neotropical flycatcher (Mionectes oleagineus) in the context of the other four species in the genus. A molecular phylogeny based on nuclear and mitochondrial sequences unambiguously showed an early basal split between montane and lowland Mionectes. The phylogeographic reconstruction of lowland taxa revealed a complex history, with multiple cases in which geographically proximate populations do not represent sister lineages. Specifically, three populations of M. oleagineus west of the Andes do not comprise a monophyletic clade; instead, each represents an independent lineage with origins east of the Andes. Divergence time estimates suggest that at least two cross-Andean dispersal events post-date Andean uplift.  相似文献   

15.
A recent molecular analysis strongly supported sister group relationship between flamingos (Phoenicopteridae) and grebes (Podicipedidae), a hypothesis which has not been suggested before. Flamingos are long-legged filter-feeders whereas grebes are morphologically quite divergent foot-propelled diving birds, and sister group relationship between these two taxa would thus provide an interesting example of evolution of different feeding strategies in birds. To test monophyly of a clade including grebes and flamingos, I performed a cladistic analysis of 70 morphological characters which were scored for 17 taxa. Parsimony analysis of these data supported monophyly of the taxon (Podicipedidae + Phoenicopteridae) and the clade received high bootstrap support. Previously overlooked morphological, oological and parasitological evidence is recorded which supports this hypothesis, and which makes the taxon (Podicipedidae + Phoenicopteridae) one of the best supported higher-level clades within modern birds. The phylogenetic significance of some fossil flamingo-like birds is discussed. The Middle Eocene taxon Juncitarsus is most likely the sister taxon of the clade (Podicipedidae + (Palaelodidae + Phoenicopteridae)) although resolution of its exact systematic position awaits revision of the fossil material. Contrary to previous assumptions, it is more parsimonious to assume that flamingos evolved from a highly aquatic ancestor than from a shorebird-like ancestor.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 157–169.  相似文献   

16.
We sequenced 2.8 kb of the RAG-1 exon for most of the extant genera in the avian order Caprimulgiformes to investigate monophyly of the order and phylogeny within the traditional families. The order is not monophyletic: the Aegothelidae (owlet-nightjars) were the sister group of the Apodiformes (swifts and hummingbirds). There was no support for the monophyly of a clade containing the remaining families of Caprimulgiformes. However, the RAG-1 data strongly supported a relationship between the Podargidae (frogmouths) and Caprimulgidae (nightjars). Within the Caprimulgidae, the Australasian genus Eurostopodus was sister to the rest of the family, which in turn was composed of four major clades, three of which were restricted to the New World and primarily to the Neotropics. The Old World caprimulgids form a monophyletic clade embedded within the New World taxa; consequently, most Old World nightjars are probably the result of a single expansion out of the Neotropics. The genus Caprimulgus was not found to be monophyletic. Several species in the Caprimulgidae have both elevated heterozygosity and high GC3 content; it is likely that these are causally related.  相似文献   

17.
Phylogenetic relationships among five cockroach families (Cryptocercidae, Polyphagidae, Blattidae, Blattellidae and Blaberidae) using seventeen species, were estimated based on the DNA sequences of the mitochondrial cytochrome oxidase subunit II (COII) gene. A cladogram inferred using the neighbour‐joining method indicated that Polyphagidae and Cryptocercidae are closely related to each other, and that these two groups are a sister group to the remaining cockroach families. The monophyly of this clade, however, was not strongly supported in terms of bootstrap percentages. Blaberidae and Blattellidae were shown to be sister groups as previously proposed, with Blattidae as a sister group to that clade. Non‐weighted and weighted parsimony analyses were also performed following analyses of nucleotide substitution patterns that indicated saturation of the COII gene among these taxa had occurred. These parsimonious cladograms suggested that Polyphagidae was the basal family, and Polyphaginae, including Cryptocercus as proposed by Grandcolas 1994a ), was not monophyletic. The inferred relationships among cockroach families (Polyphagidae, Cryptocercidae + (Blattidae + (Blattellidae + Blaberidae))) is partly in agreement with some previously published analyses. Additionally, based on molecular data, Asian and American Cryptocercus are suggested to have diverged from one another before the Oligocene (~20 mya).  相似文献   

18.
The evolutionary history of the family Bovidae remains controversial despite past comprehensive morphological and genetic investigations. In an effort to resolve some of the systematic uncertainties within the group, a combined molecular phylogeny was constructed based on four independent nuclear DNA markers (2,573 characters) and three mitochondrial DNA genes (1,690 characters) for 34 bovid taxa representing all seven of the currently recognized bovid subfamilies. The nuclear DNA fragments were analyzed separately and in combination after partition homogeneity tests were performed. There was no significant rate heterogeneity among lineages, and retention index values indicated the general absence of homoplasy in the nuclear DNA data. The conservative nuclear DNA data were remarkably effective in resolving associations among bovid subfamilies, which had a rapid radiation dating back to approximately 23 MYA. All analyses supported the monophyly of the Bovinae (cow, nilgai, and kudu clade) as a sister lineage to the remaining bovid subfamilies, and the data convincingly suggest that the subfamilies Alcelaphinae (hartebeest, tsessebe, and wildebeest group) and Hippotraginae (roan, sable, and gemsbok clade) share a close evolutionary relationship and together form a sister clade to the more primitive Caprinae (represented by sheep, goat, and muskox). The problematic Reduncinae (waterbuck, reedbuck) seem to be the earliest-diverging group of the Caprinae/Alcelaphinae/Hippotraginae clade, whereas the Antilopinae (gazelle and dwarf antelope clade) were always polyphyletic. The sequence data suggest that the initial diversification of the Bovidae took place in Eurasia and that lineages such as the Cephalophinae and other enigmatic taxa (impala, suni, and klipspringer) most likely originated, more or less contemporaneously, in Africa.  相似文献   

19.
Adephaga is the second largest suborder of beetles (Coleoptera) and they serve as important arthropod predators in both aquatic and terrestrial ecosystems. The suborder is divided into Geadephaga comprising terrestrial families and Hydradephaga for aquatic lineages. Despite numerous studies, phylogenetic relationships among the adephagan families and monophyly of the Hydradephaga itself remain in question. Here we conduct a comprehensive phylogenomic analysis of the suborder using ultraconserved elements (UCEs). This study presents the first in vitro test of a newly developed UCE probe set customized for use within Adephaga that includes both probes tailored specifically for the suborder, alongside generalized Coleoptera probes previously found to work in adephagan taxa. We assess the utility of the entire probe set, as well as comparing the tailored and generalized probes alone for reconstructing evolutionary relationships. Our analyses recovered strong support for the paraphyly of Hydradephaga with whirligig beetles (Gyrinidae) placed as sister to all other adephagan families. Geadephaga was strongly supported as monophyletic and placed sister to a clade composed of Haliplidae + Dytiscoidea. Monophyly of Dytiscoidea was strongly supported with relationships among the dytiscoid families resolved and strongly supported. Relationships among the subfamilies of Dytiscidae were strongly supported but largely incongruent with prior phylogenetic estimates for the family. The results of our UCE probe comparison showed that tailored probes alone outperformed generalized probes alone, as well as the full combined probe set (containing both types of probes), under decreased taxon sampling. When taxon sampling was increased, the full combined probe set outperformed both tailored probes and generalized probes alone. This study provides further evidence that UCE probe sets customized for a focal group result in a greater number of recovered loci and substantially improve phylogenomic analysis.  相似文献   

20.
Comparative ultrastructural data have shown that at least two distinct groups exist within Carteria. Similarly, interpretations of variation in gross morphological features have led to the discovery of morphologically distinct groups within the genus. Partial sequences from the nuclear-encoded small- and large-subunit ribosomal RNA molecules of selected Carteria taxa were studied as a means of 1) testing hypotheses that distinct groups of species exist within the genus and 2) assessing monophyly of the genus. Parsimony analysis of the sequence data suggests that three Carteria species, C. lunzensis, C. crucifera, and C. olivieri, form a monophyletic group that is the basal sister group to all other ingroup flagellate taxa (including species of Chlamydomonas, Haematococcus, Stephanosphaera, Volvox, and Eudorina). Two other Carteria taxa, C. radiosa and Carteria sp. (UTEX isolate LB 762), form a clade that is the sister group to a clade that includes Haematococcus spp., Chlamydomonas spp., and Stephanosphaera. Thus, the sequence data support the interpretations of ultrastructural evidence that described two distinct Carteria lineages. Moreover, the sequence data suggest that these two Carteria groups do not form a monophyletic assemblage. Parsimony analysis of a suite of organismal (morphological, ultra-structural, life history, and biochemical) character data also suggest two distinct lineages among the five Carteria taxa; however, the organismal data are ambiguous regarding monophyly of these Carteria taxa. When the two independent data sets are pooled, monophyly of Carteria is not supported; therefore, the weight of available evidence, both molecular and organismal, fails to support the concept of Carteria as a natural genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号