首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴碧川  曾虎  张杰军  朱晋峰 《生物磁学》2011,(15):2910-2913
目的:探讨胆管癌患者血管内皮生长因子C和D(vascular endothelial growth factor-Cand.D,VEGF.CandVEGF.D)在胆管癌组织中的表达及其与肿瘤淋巴结转移的关系。方法:应用免疫组化SABC法及Real-timePCR法检测57例胆管癌组织和正常胆管组织中VEGF-C、vEGF-D蛋白及其mRNA的表达。结果:胆管癌组织VEGF—C和VEGF.D表达明显高于正常胆管组织(P〈0.叭),其中淋巴结转移组VEGF-C、VEGF—D的表达与淋巴结未转移组间统计学差异显著(P〈0.05)。VEGF-C和VEGF-D在胆管癌组织中的表达与淋巴结转移有关(P〈0.01)。结论:胆管癌细胞非摄入性高表达的VEGF.C和VEGF.D与淋巴结转移密切相关,可作为评估胆管癌患者预后的重要参考指标。  相似文献   

2.
目的:探讨胆管癌患者血管内皮生长因子C和D(vascular endothelial growth factor-C and-D,VEGF-C and VEGF-D)在胆管癌组织中的表达及其与肿瘤淋巴结转移的关系。方法:应用免疫组化SABC法及Real-time PCR法检测57例胆管癌组织和正常胆管组织中VEGF-C、VEGF-D蛋白及其mRNA的表达。结果:胆管癌组织VEGF-C和VEGF-D表达明显高于正常胆管组织(P<0.01),其中淋巴结转移组VEGF-C、VEGF-D的表达与淋巴结未转移组间统计学差异显著(P<0.05)。VEGF-C和VEGF-D在胆管癌组织中的表达与淋巴结转移有关(P<0.01)。结论:胆管癌细胞非摄入性高表达的VEGF-C和VEGF-D与淋巴结转移密切相关,可作为评估胆管癌患者预后的重要参考指标。  相似文献   

3.
Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading to secondary lymphedema. Here we show, using a newly established mouse model, that collecting lymphatic vessels can be regenerated and fused to lymph node transplants after lymph node removal. Treatment of lymph node-excised mice with adenovirally delivered vascular endothelial growth factor-C (VEGF-C) or VEGF-D induced robust growth of the lymphatic capillaries, which gradually underwent intrinsic remodeling, differentiation and maturation into functional collecting lymphatic vessels, including the formation of uniform endothelial cell-cell junctions and intraluminal valves. The vessels also reacquired pericyte contacts, which downregulated lymphatic capillary markers during vessel maturation. Growth factor therapy improved the outcome of lymph node transplantation, including functional reconstitution of the immunological barrier against tumor metastasis. These results show that growth factor-induced maturation of lymphatic vessels is possible in adult mice and provide a basis for future therapy of lymphedema.  相似文献   

4.
Tumor-induced lymphangiogenesis: a target for cancer therapy?   总被引:9,自引:0,他引:9  
Recent advances in understanding the biology of lymphangiogenesis, the new growth of lymphatic vessels, have cast new light on the molecular basis of metastasis to regional lymph nodes. The receptor tyrosine kinase VEGFR-3 is virtually exclusively expressed on lymphatic but not blood endothelium in the adult, and activation of VEGFR-3 by its ligands VEGF-C and VEGF-D is sufficient to induce lymphangiogenesis. Correlative studies with human tumors and functional studies using animal tumor models show that increased levels of VEGF-C or VEGF-D in tumors lead to enhanced numbers of lymphatic vessels in the vicinity of tumors, which in turn promotes metastasis to regional lymph nodes by providing a greater number of entry sites into the lymphatic system for invading tumor cells. These findings have prompted studies to investigate whether inhibitors of VEGFR-3 activation might represent novel therapeutic agents for the suppression of metastasis. However, a number of points regarding the therapeutic potential of anti-lymphangiogenic treatments in the context of cancer remain to be addressed. The spectrum and relative importance of molecules that induce lymphangiogenesis and the regulation of their expression during tumor progression, the reversibility of tumor-induced lymphangiogenesis, and possible side-effects of anti-lymphangiogenesis-based therapies all need to be investigated. Most importantly, the extent to which lymph node metastases contribute to the formation of metastases in other organs remains to be elucidated. These aspects are the focus of this review, and their investigation should serve as a roadmap to possible translational application.  相似文献   

5.
BACKGROUND: The lymphatic endothelium is an important semi-permeable barrier separating lymph from the interstitial space. However, there is currently a limited understanding of the lymphatic endothelial barrier and the mechanisms of lymph formation. The objectives of this study were to investigate the potential active role of lymphatic endothelial cells in barrier regulation, and to test whether the endothelial cell agonists VEGF-A and VEGF-C can alter lymphatic endothelial barrier function. METHODS AND RESULTS: Cultured adult human dermal microlymphatic endothelial cells (HMLEC-d) and human umbilical vein endothelial cells (HUVEC) were respectively used as models of lymphatic and vascular endothelium. Transendothelial electrical resistance (TER) of endothelial monolayers served as an index of barrier function. Cells were treated with VEGF-A, VEGF-C, or the VEGFR-3 selective mutant VEGF-C156S. MAZ51 was used to inhibit VEGFR-3 signaling. The results show that while VEGF-A causes a time-dependent decrease in TER in HUVEC, there is no response in HMLEC-d. In contrast, VEGF-C and VEGF-C156S cause a similar decrease in TER in HMLEC-d that is not observed in HUVEC. These results corresponded to the protein expression of VEGFR-2 and VEGFR-3 in these cell types, determined by Western blotting. In addition, the VEGF-C- and VEGF-C156S-induced TER changes were inhibited by MAZ51. CONCLUSIONS: The results indicate differential responses of the lymphatic and vascular endothelial barriers to VEGF-A and VEGF-C. Furthermore, our data suggest that VEGF-C alters lymphatic endothelial function through a mechanism involving VEGFR-3.  相似文献   

6.
ABSTRACT: BACKGROUND: Mounting clinical and experimental data suggest that the migration of tumor cells into lymph nodes is greatly facilitated by lymphangiogenesis. Vascular endothelial growth factor (VEGF)-C and D have been identified as lymphangiogenic growth factors and play an important role in tumor lymphangiogenesis. The purpose of this study was to investigate the location of lymphangiogenesis driven by tumor-derived VEGF-C/D in breast cancer, and to determine the role of intratumoral and peritumoral lymphatic vessel density (LVD) in lymphangiogenesis in breast cancer. METHODS: The expression levels of VEGF-C/D were determined by immunohistochemistry, and intratumoral LVD and peritumoral LVD were assessed using immunohistochemistry and the D2-40 antibody in 73 patients with primary breast cancer. The associations of intratumoral LVD and peritumoral LVD with VEGF-C/D expression, clinicopathological features and prognosis were assessed. RESULTS: VEGF-C and D expression were significantly higher in breast cancer than benign disease (P < 0.01). VEGF-C (P < 0.001) and VEGF-D (P = 0.005) expression were significantly associated with peritumoral LVD, but not intratumoral LVD. Intratumoral LVD was associated with tumor size (P = 0.01). Peritumoral LVD was significantly associated with lymph node metastasis (LNM; P = 0.005), lymphatic vessel invasion (LVI; P = 0.017) and late tumor,node,metastasis(TNM) stage (P = 0.011). Moreover, peritumoral LVD was an independent risk factor for axillary lymph node metastasis, overall survival and disease-free survival in multivariate analysis. CONCLUSIONS: This study suggests that tumor-derived VEGF-C/D induce peritumoral lymphangiogenesis, which may be one mechanism that leads to lymphatic invasion and metastatic spread. Peritumoral LVD has potential as an independent prognostic factor in breast cancer patients.  相似文献   

7.
BACKGROUND: Vascular endothelial growth factor (VEGF)-C is implicated in lymphangiogenesis, however the exact role of VEGF-C in promoting lymphatic spread of cancer cells remains largely unknown. METHODS: The expression of VEGF-C was immunohistochemically determined in 97 endoscopic biopsy specimens from 46 patients with submucosal gastric carcinoma (SGC). Nodal metastases including micrometastasis and isolated tumor cells (ITC) were evaluated by immunohistochemical staining for cytokeratin in 1650 lymph nodes, and tumor cells in these metastatic nodes were also examined for VEGF-C expression. RESULTS: In biopsy samples, VEGF-C was positively detected in 21 (47%) patients. Metastases were identified in 46 (2.8%) nodes from 15 (33%) patients. Metastases were detected in 39 nodes by hematoxylin-eosin (H&E) staining and in additional 7 nodes as ITC by immunohistochemical staining. The rate of lymph node metastases was significantly correlated with VEGF-C expression in biopsy samples (p < 0.05). The positive and negative predictive values of VEGF-C in biopsy specimens for nodal metastasis were 44 %(10/21) and 80% (20/25), respectively. Among the 46 metastatic nodes, tumor cells in 29 (63%) nodes positive patients expressed VEGF-C, whereas those in 17 (37%) nodes did not. VEGF-C expression was high in macronodular foci in medullary areas, whereas more than half of ITC or micrometastasis located in peripheral sinus lacked the expression of VEGF-C. CONCLUSIONS: Despite the significant correlation, immunodetcetion of VEGF-C in endoscopic biopsy specimens could not accurately predict the nodal status, and thus cannot be applied for the decision of the treatment for SGC. VEGF-C may not be essential for lymphatic transport, but rather important to develop the macronodular lesion in metastatic nodes.  相似文献   

8.
Metastasis is a frequent and lethal complication of cancer. Vascular endothelial growth factor-C (VEGF-C) is a recently described lymphangiogenic factor. Increased expression of VEGF-C in primary tumours correlates with dissemination of tumour cells to regional lymph nodes. However, a direct role for VEGF-C in tumour lymphangiogenesis and subsequent metastasis has yet to be demonstrated. Here we report the establishment of transgenic mice in which VEGF-C expression, driven by the rat insulin promoter (Rip), is targeted to beta-cells of the endocrine pancreas. In contrast to wild-type mice, which lack peri-insular lymphatics, RipVEGF-C transgenics develop an extensive network of lymphatics around the islets of Langerhans. These mice were crossed with Rip1Tag2 mice, which develop pancreatic beta-cell tumours that are neither lymphangiogenic nor metastatic. Double-transgenic mice formed tumours surrounded by well developed lymphatics, which frequently contained tumour cell masses of beta-cell origin. These mice frequently developed pancreatic lymph node metastases. Our findings demonstrate that VEGF-C-induced lymphangiogenesis mediates tumour cell dissemination and the formation of lymph node metastases.  相似文献   

9.
ABSTRACT: BACKGROUND: As a known regulator of apoptosis, survivin has positive relationship with lymphatic metastasis in breast cancer. This study aims to detect the difference in expression between survivin and vascular endothelial growth factor-C (VEGF-C) in treated breast cancer cells and tissues, and to analyze the correlation among survivin, VEGF-C and lymphatic metastasis. METHODS: Plasmid with survivin and VEGF-C shRNA and lentivirus with survivin gene were constructed and transfected into breast cancer cell ZR-75-30. Then the expressions of the two genes were examined using western blot analysis and real-time PCR. The change of invasiveness of breast cancer cells was assessed using matrigel invasion assay. Using immunohistochemistry, the expression of survivin and VEGF-C were analyzed in 108 clinical breast cancer cases with breast cancer tissue and lymph node. RESULTS: Survivin regulated the expression of VEGF-C at both protein and mRNA levels in breast cancer cells. Immunohistochemical analysis showed that the level of VEGF-C expression was significantly related with that of survivin in breast cancer tissues (p<0.05). VEGF-C was found to participate in the process of breast cancer cells invasion mediated by survivin. The co-expression of the two and the single expression of any one took significant difference in positive lymph node (p<0.05). CONCLUSIONS: Survivin takes an important part in regulating the expression of VEGF-C. VEGF-C could influence the invasive ability mediated by survivin. The co-expression of survivin and VEGF-C is more statistically significant to assess lymphatic metastasis in breast cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9193530897100952.  相似文献   

10.
VEGF-D promotes the metastatic spread of tumor cells via the lymphatics   总被引:135,自引:0,他引:135  
Metastasis to local lymph nodes via the lymphatic vessels is a common step in the spread of solid tumors. To investigate the molecular mechanisms underlying the spread of cancer by the lymphatics, we examined the ability of vascular endothelial growth factor (VEGF)-D, a ligand for the lymphatic growth factor receptor VEGFR-3/Flt-4, to induce formation of lymphatics in a mouse tumor model. Staining with markers specific for lymphatic endothelium demonstrated that VEGF-D induced the formation of lymphatics within tumors. Moreover, expression of VEGF-D in tumor cells led to spread of the tumor to lymph nodes, whereas expression of VEGF, an angiogenic growth factor which activates VEGFR-2 but not VEGFR-3, did not. VEGF-D also promoted tumor angiogenesis and growth. Lymphatic spread induced by VEGF-D could be blocked with an antibody specific for VEGF-D. This study demonstrates that lymphatics can be established in solid tumors and implicates VEGF family members in determining the route of metastatic spread.  相似文献   

11.
The lymphatic system transports interstitial fluid and macromolecules from tissues back to the blood circulation, and plays an important role in the immune response by directing the traffic of lymphocytes and antigen-presenting cells. The lymphatic system also constitutes one of the most important pathways of tumor dissemination. In many human cancers, increased expression of vascular endothelial growth factor-C (VEGF-C) is correlated with regional lymph node metastases. Experimental studies using transgenic mice overexpressing VEGF-C or xenotransplantation of VEGF-C-expressing tumor cells into immunodeficient mice have demonstrated a role for VEGF-C in tumor lymphangiogenesis and the subsequent formation of lymph node metastases. However, there is at present little evidence for lymphangiogenesis in human tumors and the relative importance of preexisting vs. newly formed lymphatics for metastasis in humans remains to be determined. Nonetheless, the striking correlation between the levels of VEGF-C in primary human tumors and lymph node metastases predicts its importance in cancer spread. Aside from promoting lymphangiogenesis, VEGF-C may also activate lymphatics to promote tumor cell chemotaxis, lymphatic intravasation and hence tumor cell dissemination.Work in the authors' laboratories was supported by grants from the Swiss National Science Foundation (no. 3100–064037.00) (to M.S.P), the Speaker's Fund for Biomedical Research (to M.S.) and the Peter Sharp Foundation (to M.S.). Parts of this review will be published in abbreviated form in Thrombosis and Haemostasis  相似文献   

12.
Nearly four centuries after the discovery of lymphatic vessels, the molecular mechanisms underlying their development are beginning to be elucidated. Vascular endothelial growth factor C (VEGF-C) and VEGF-D, via signaling through VEGFR-3, appear to be essential for lymphatic vessel growth. Observations from clinicopathological studies have suggested that lymphatic vessels serve as the primary route for the metastatic spread of tumor cells to regional lymph nodes. Recent studies in animal models have provided convincing evidence that tumor lymphangiogenesis facilitates lymphatic metastasis. However, it is not clear how tumor-associated lymphangiogenesis is regulated, and little is known about how tumor cells escape from the primary tumor and gain entry into the lymphatics. This review examines some of these issues and provides a brief summary of the recent developments in this field of research.  相似文献   

13.
Lymphangiogenesis, the growth of new lymph vessels, has important roles in both normal and pathological lymphatic function. Despite recent advances, the precise molecular mechanisms behind the lymphangiogenic process remain unclear. The Australian marbled gecko, Christinus marmoratus, voluntarily drops its tail (autotomy) as a predator avoidance strategy. Following autotomy a new tail is regenerated including lymphatic drainage pathways. We examined the molecular control of lymphangiogenesis within the unique model of the regenerating gecko tail. Partial sequences were obtained of the gecko lymphangiogenic growth factors, vascular endothelial growth factor C (VEGF-C) and VEGF-D along with their receptor VEGFR-3. These were highly homologous to other vertebrates. Quantitative real-time polymerase chain reaction (PCR) demonstrated up-regulation of VEGF-C, VEGF-D and VEGFR-3 mRNA expression during the early and middle stages of tail regeneration (between 4 and 9 weeks following autotomy), in late regeneration (12 weeks) and during mid-regeneration (7 and 9 weeks), respectively. VEGF-C and VEGF-D immunostaining was observed lining some lymphatic-like and blood vessels in early–mid tail regeneration, indicating possible associations of the proteins with VEGFRs on endothelia. Keratinocytes and fibroblasts also showed positive staining of VEGF-C and VEGF-D in early–mid tail regeneration. Additionally, VEGF-C was localised in adipose tissue in all tail states examined. This work suggests that specific timings exist for the expression of the lymphangiogenic growth factors, VEGF-C and VEGF-D, and their receptor, VEGF-R3, throughout the regeneration of a functional lymphatic network. Along with localisation data, this suggests potential functions for the growth factors in lymphangiogenesis and angiogenesis throughout tail regeneration.  相似文献   

14.
Malignant melanomas of the skin primarily metastasize to lymph nodes, and the detection of sentinel lymph node metastases serves as an important prognostic parameter. There is now compelling evidence that melanomas can induce lymphangiogenesis (growth of lymphatic vessels), mainly at the tumor-stroma interface, and that the level of tumor lymphangiogenesis is correlated with the incidence of sentinel lymph node metastases and with disease-free survival. Thus, tumor lymphangiogenesis can serve as a novel prognostic predictor in melanoma. Vascular endothelial growth factor (VEGF)-C, released by melanoma cells and by tumor-associated macrophages, likely represents the major lymphangiogenic factor in melanoma, although other members of the VEGF family might also be involved. The recent discovery that tumors can induce a premetastatic niche, by inducing lymphatic vessel growth in sentinel lymph nodes even before metastasis, and that lymph node lymphangiogenesis enhances metastatic spread, indicates that activated lymphatic vessels represent novel targets for the detection and/or therapy of melanoma metastases.  相似文献   

15.
目的观察血管内皮生长因子D(vascular endothelial growth factor D,VEGF-D)在人膀胱移行细胞癌组织内的表达,探讨VEGF-D在膀胱移行细胞癌组织淋巴管密度(lymphatic vessel density,LVD)及淋巴结转移之间的关系。方法取人膀胱移行细胞癌组织蜡块30例,免疫组化法观察VEGF-D在膀胱移行细胞癌组织内的表达情况。以淋巴管内皮特异性标记物D2-40标记淋巴管,计数癌组织内淋巴管密度。结果VEGF-D蛋白主要表达于癌细胞胞浆内,VEGF-D在淋巴结转移组膀胱移行细胞癌组织内的表达水平明显高于无淋巴结转移组(P0.05);淋巴结转移组膀胱移行细胞癌组织内的淋巴管密度明显高于无淋巴结转移组(P0.05)。VEGF-D表达与膀胱移行细胞癌淋巴管密度及淋巴结转移之间具有显著的相关性。结论VEGF-D表达在膀胱移行细胞癌组织内淋巴管生成及淋巴结转移中起重要作用。  相似文献   

16.
彭庆弟  周凤鸣  郑涛  尤建川  张永川 《生物磁学》2013,(27):5353-5355,5343
目的:通过观察我院收治的结肠癌患者临床诊断资料,探讨分析血管内皮生长因子-C(VEGF-C)在该疾病患者中的生长以及淋巴转移的作用情况。方法:对我院收治的72例结肠癌患者与同期12例癌旁非癌组织患者,采用免疫组化法检测VEGF-C表达情况。结果:结肠癌与癌旁非癌组织患者的VEGF—C的阳性表达率分别为65-3%与8-3%,对比差异显著(P〈O.05);VEGF.C在结肠癌中的表达与淋巴转移、浸润深度以及TNM分期情况有关(P〈0.05)。结论:结肠癌患者血管内皮生长因子-C(VEGF-C)的阳性表达率高,具体表达的水平高低与患者的淋巴转移、结肠癌浸润深度以及TNM分期有关,值得临床上进一步探讨与研究。  相似文献   

17.

Background

Lymph node metastasis is a key event in the progression of breast cancer. Therefore it is important to understand the underlying mechanisms which facilitate regional lymph node metastatic progression.

Methodology/Principal Findings

We performed gene expression profiling of purified tumor cells from human breast tumor and lymph node metastasis. By microarray network analysis, we found an increased expression of polycomb repression complex 2 (PRC2) core subunits EED and EZH2 in lymph node metastatic tumor cells over primary tumor cells which were validated through real-time PCR. Additionally, immunohistochemical (IHC) staining and quantitative image analysis of whole tissue sections showed a significant increase of EZH2 expressing tumor cells in lymph nodes over paired primary breast tumors, which strongly correlated with tumor cell proliferation in situ. We further explored the mechanisms of PRC2 gene up-regulation in metastatic tumor cells and found up-regulation of E2F genes, MYC targets and down-regulation of tumor suppressor gene E-cadherin targets in lymph node metastasis through GSEA analyses. Using IHC, the expression of potential EZH2 target, E-cadherin was examined in paired primary/lymph node samples and was found to be significantly decreased in lymph node metastases over paired primary tumors.

Conclusions/Significance

This study identified an over expression of the epigenetic silencing complex PRC2/EED-EZH2 in breast cancer lymph node metastasis as compared to primary tumor and its positive association with tumor cell proliferation in situ. Concurrently, PRC2 target protein E-cadherin was significant decreased in lymph node metastases, suggesting PRC2 promotes epithelial mesenchymal transition (EMT) in lymph node metastatic process through repression of E-cadherin. These results indicate that epigenetic regulation mediated by PRC2 proteins may provide additional advantage for the outgrowth of metastatic tumor cells in lymph nodes. This opens up epigenetic drug development possibilities for the treatment and prevention of lymph node metastasis in breast cancer.  相似文献   

18.

Introduction and Objectives

Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice.

Results

A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells.

Conclusion

Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype.  相似文献   

19.
Vascular endothelial growth factor C (VEGF-C) is a key mediator of lymphangiogenesis, acting via its receptors VEGF-R2 and VEGF-R3. High expression of VEGF-C in tumors correlates with increased lymphatic vessel density, lymphatic vessel invasion, sentinel lymph node metastasis and poor prognosis. Recently, we found that in a chemically induced skin carcinoma model, increased VEGF-C drainage from the tumor enhanced lymphangiogenesis in the sentinel lymph node and facilitated metastatic spread of cancer cells via the lymphatics. Hence, interference with the VEGF-C/VEGF-R3 axis holds promise to block metastatic spread, as recently shown by use of a neutralizing anti-VEGF-R3 antibody and a soluble VEGF-R3 (VEGF-C/D trap). By antibody phage-display, we have developed a human monoclonal antibody fragment (single-chain Fragment variable, scFv) that binds with high specificity and affinity to the fully processed mature form of human VEGF-C. The scFv binds to an epitope on VEGF-C that is important for receptor binding, since binding of the scFv to VEGF-C dose-dependently inhibits the binding of VEGF-C to VEGF-R2 and VEGF-R3 as shown by BIAcore and ELISA analyses. Interestingly, the variable heavy domain (VH) of the anti-VEGF-C scFv, which contains a mutation typical for camelid heavy chain-only antibodies, is sufficient for binding VEGF-C. This reduced the size of the potentially VEGF-C-blocking antibody fragment to only 14.6 kDa. Anti-VEGF-C VH-based immunoproteins hold promise to block the lymphangiogenic activity of VEGF-C, which would present a significant advance in inhibiting lymphatic-based metastatic spread of certain cancer types.  相似文献   

20.
Recently, vascular endothelial growth factor receptor 3 (VEGFR-3) has been shown to provide a specific marker for lymphatic endothelia in certain human tissues. In this study, we have investigated the expression of VEGFR-3 and its ligands VEGF-C and VEGF-D in fetal and adult tissues. VEGFR-3 was consistently detected in the endothelium of lymphatic vessels such as the thoracic duct, but fenestrated capillaries of several organs including the bone marrow, splenic and hepatic sinusoids, kidney glomeruli and endocrine glands also expressed this receptor. VEGF-C and VEGF-D, which bind both VEGFR-2 and VEGFR-3 were expressed in vascular smooth muscle cells. In addition, intense cytoplasmic staining for VEGF-C was observed in neuroendocrine cells such as the alpha cells of the islets of Langerhans, prolactin secreting cells of the anterior pituitary, adrenal medullary cells, and dispersed neuroendocrine cells of the gastrointestinal tract. VEGF-D was observed in the innermost zone of the adrenal cortex and in certain dispersed neuroendocrine cells. These results suggest that VEGF-C and VEGF-D have a paracrine function and perhaps a role in peptide release from secretory granules of certain neuroendocrine cells to surrounding capillaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号