首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare a novel controlled release tablet formulation based on interpolyelectrolyte complex (PEC). Interpolymer interactions between the countercharged polymers like Eudragit® EPO (polycation) and hypromellose acetate succinate (polyanion) and Eudragit® EPO and hypromellose phthalate (polyanion) were investigated with a view to their use in per oral controlled release drug delivery systems. The formation of inter-macromolecular ionic bonds between cationic polymer and anionic polymer was investigated using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry. The FT-IR spectra of the tested polymeric matrices are characterized by visible changes in the observed IR region indicating the interaction between chains of two oppositely charged copolymers. The performance of the in situ formed PEC as a matrix for controlled release of drugs was evaluated, using acetaminophen as a model drug. The dissolution data of these matrices were fitted to different dissolution models. It was found that drug release followed zero-order kinetics and was controlled by the superposition of the diffusion and erosion. These profiles could be controlled by conveniently modifying the proportion of the polymer ratio, polymer type, and polymer concentration the in the tablets.KEY WORDS: Eudragit E, hypromellose acetate succinate, hypromellose phthalate polyelectrolyte complexation  相似文献   

2.
Field-effect-based capacitive electrolyte-insulator-semiconductor (EIS) sensors have been utilised for the deoxyribonucleic acid (DNA) immobilisation and hybridisation detection as well as for monitoring the layer-by-layer adsorption of polyelectrolytes (anionic poly(sodium 4-styrene sulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH)). The EIS sensors with charged macromolecules have been systematically characterised by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. The effect of the number and polarity of the polyelectrolyte layers on the shift of the capacitance-voltage curves has been investigated. Alternating potential shifts of about 30-90 mV have been observed after the adsorption of each polyanion and polycation layer, respectively. The DNA immobilisation and hybridisation signals were 35-55 and 24-33 mV, respectively. The possible mechanisms for the sensor responses are discussed.  相似文献   

3.
The formation of colloids based on polyelectrolyte complexes (PECs) of biopolymers was investigated through the complexation between two charged polysaccharides, chitosan as polycation, and dextran sulfate as polyanion. The slow dropwise addition of components, generally used for the formation of PECs, allowed to elaborate both cationic or anionic particles with an excess of chitosan or dextran sulfate, respectively. The PEC particles featured a core/shell structure, the hydrophobic core resulting from the segregation of complexed segments whereas excess component in the outer shell ensured the colloidal stabilization against further coagulation. Considering the host/guest concept for the formation of PECs, the influence of the molecular weight of components on particles sizes could be well explained by the chain length ratios of the two polymers. As an irreversible flocculation occurred with a dropwise approach for both cationic and anionic PEC particles when the mixing ratio was close to unity, a more versatile, and simpler to setup, method was designed: the one-shot addition of one solution to the other. Because process of addition is faster than the flocculation, cationic or anionic particles could be elaborated irrespective of the order of addition of the reactant. Characterization of these particles by quasielastic light scattering, electrophoresis, and scanning electron microscopy revealed very similar properties to those obtained by a slow dropwise approach. Critical coagulation concentrations of 0.12 and 0.09 M (with sodium chloride) for cationic and anionic particles evidenced a mostly electrostatic stabilization.  相似文献   

4.
Intermolecular complexes of genomic polydisperse DNA with synthetic polycations have been studied. Two cationic polymers have been used, a homopolymer poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its analogue grafted with poly(oxyethylene). The amount of poly(oxyethylene) grafts in the copolymer was 15 mol % and Mw of the graft was 200 g/mol. Salmon DNA (sodium salt) was used. The average molecular weight (Mw) of DNA was 10.4 x 10(6) g/mol. Conductivity, pH, and dynamic light scattering studies were used to characterize the complexes. The size and shape of the polyelectrolyte complex particles have been studied as a function of the cation-to-anion ratio in aqueous solutions of varying ionic strengths. The polyelectrolyte complexes have extremely narrow size distributions taking into account the polydispersity of the polyelectrolytes studied. The poly(oxyethylene) grafts on PMOTAC promote the formation of small colloidally stabile complex particles. Addition of salt shifts the macroscopic phase separation toward lower polycation content; that is, complexes partly phase separate with the mixing ratios far from 1:1. Further addition of salt to the turbid, partly phase separated solution results in the dissociation of complexes and the polycation and DNA dissolve as individual chains.  相似文献   

5.
Cationic starch: an effective flocculating agent   总被引:24,自引:0,他引:24  
S. Pal  D. Mal  R.P. Singh   《Carbohydrate polymers》2005,59(4):417-423
A series of cationic starches (Cat St) have been developed by incorporating a cationic moiety N-(3-Chloro-2-hydroxypropyl) trimethyl ammonium chloride (CHPTAC) onto the backbone of starch in presence of NaOH. The cationic starches are characterized by elemental analysis, FTIR spectroscopy and intrinsic viscosity measurement. The flocculation characteristics of these starches have been evaluated in 0.25 wt% silica suspension by jar test. It has been found that among the four cationic starches, the one with longer CHPTAC chains shows the best performance. The flocculation characteristics of this starch are on silica suspensions compared with various commercially available flocculants.  相似文献   

6.
For the immobilization of spores of Penicillium raistrickii i 477 the formation of polyelectrolyte complexes using the sodium salt of cellulose sulphate as polyanion and poly-dimethyl-diallylammoniumchloride as polycation was used. Light and scanning electron microscopy have shown that during germination of spores the capsule walls do not cause effective limitations on hyphal growth and that there are no significant morphological changes of the mycelium detectable by an outgrowth of immobilized spores. By comparing the 15α-hydroxylation of 13-ethyl-gon-4-en-3,17-dione with free and encapsulated cells it was found that an increase of total dry biomass per immobilized system led to a higher product formation in relation to free cells.  相似文献   

7.
A new family of block polyelectrolyte networks containing cross-linked poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) was synthesized by copolymerization of acrylic acid and bisacrylated PEO (10 kDa). Two materials with different PEO/PAA ratios were compared with a weakly cross-linked PAA homopolymer network. The networks bound a cationic protein, cytochrome C, due to the polyion coupling, leading to the network contraction. After binding the protein the block polyelectrolyte networks were more porous compared to a homopolymer network, facilitating protein absorption within the gel. The protein was released by adding Ca2+ ions or a polycation. Ca2+ ions migrated within the gels and reacted with PAA chains, thus displacing the protein. The polycation transfer into hydrogels, as a result of polyion substitution reactions, was inhibited by the excess of PEO chains in the block polyelectrolyte networks. Overall, these findings advance development of functional polyelectrolyte networks for immobilization and controlled release of proteins.  相似文献   

8.
A general thermodynamic analysis is presented, describing how counterion species of different nature, but the same valency, influence polyelectrolyte transformations and reactions of the general form: PA1.B1-M(+)-->PA2.B2M+ + (B1 - B2)M+. Here PA1 and PA2 are two different states or structural forms of a polyanion, B1 and B2 are the number of M+ ions thermodynamically bound to the polyanions PA1 and PA2, respectively. The specific effects of the two counterions, M1+ and M2+, on this equilibrium can be simply related to the quotient of their selectivity constants, D2M2M1/D1M2M1, for the polyion states 1 and 2. We analyze how different monovalent counterions (particularly, sodium and potassium) affect polyelectrolyte reactions and transformations such as, e.g., the DNA helix-coil transition. Previous experimental results on the competition between DNA and the synthetic polyanion, poly(methacrylic acid), for binding to the synthetic polycation, poly(N-ethylvinylpyridinium), has been investigated with respect to sodium and potassium ion specificity, using our model. We also discuss the DNA-histone disassembly/assembly reaction modeled as a competition of two polyanions for binding to a polycation.  相似文献   

9.
In order to modify the properties of native starch granules, the formation of gelatinized granular forms (GGS) from normal, waxy, and high amylose maize, as well as potato and tapioca starches was investigated by treating granules with aqueous ethanol at varying starch:water:ethanol ratios and then heating in a rotary evaporator to remove ethanol. The modified starches were characterized using bright field, polarized and electron microscopy. Short/long range molecular order and enthalpic transitions on heating were also studied using infrared spectroscopy, X-ray diffractometry and differential scanning calorimetry respectively. A diffuse birefringence pattern without Maltese cross was observed for most GGS samples. Treatment with aqueous ethanol resulted in starch-specific changes in the surface of granules, most noticeably swelling and disintegration in waxy maize, surface wrinkling in normal maize and tapioca, swelling and opening-up in potato starches, and swelling and bursting in high amylose maize. The ratio of ethanol to water at which original granular order was disrupted also varied with starch type. GGS had less short range molecular order than native granules as inferred by comparing 1047/1022 wave number ratio from infrared spectroscopy. Similarly, A- and B-type diffraction reflections were either reduced or completely lost with evolution of V-type patterns in GGS.  相似文献   

10.
Three kinds of polyion complex membranes were prepared on a glassy carbon electrode: polycation (poly-L-lysine)-rich membrane, polyanion (DNA)-rich membrane, and equivalent membrane. The permeation of electroactive species (e.g., hydrogen peroxide, L-ascorbate, urate, dopamine) through the membrane was measured by the oxidation current of species at base electrode. Permeation of the anionic species can be depressed through the anion-rich membrane, and permeation of the cation can also be regulated through the cation-rich membrane. It is obvious that the charge exclusion can be controlled by changing the component ratio of polycation and polyanion during preparation.  相似文献   

11.
A new approach to optimization of mixtures for the condensation and introduction of plasmid DNA into eukaryotic cells is proposed, which is based on the formation of ternary interpolyelectrolyte complexes (IPEC) DNA/polycation/polyanion. Polyethyleneimine (PEI) with M 30-40 kDa as polycation and polyacrylic acid (PA) with M 20 kDa or its grafted copolymer with polyethyleneglycol (PEG) as polyanion were used, and ternary complexes with various ratios of the components were prepared. The PA-PEG incorporation into a ternary complex (by itself or as a 1:1 mixture with PA) was shown to confer the solubility onto complexes in a wide range of DNA/PEI ratios. Incorporation of even minute amounts of PA-PEG (as a 1:9 mixture with PA), while not completely preventing the aggregation of ternary IPEC, drastically changed their sorption characteristics. Using a beta-galactosidase-encoding plasmid, efficiencies of transfection of the CHO-AA8 and 293 cells for different IPEC and DNA/lipofectin complex were compared. The maximum efficiency was exhibited by ternary complex DNA/PEI/polyanion where a 1:1 mixture of PA and PA-PEG was used as polyanion. Possible reasons for this effect and further ways of optimization of mixtures for expression of plasmid DNA in the context of the new approach are discussed.  相似文献   

12.
Cationic starch (D.S. 0.065) and anionic starch (D.S. 0.037) were used to form biopolyelectrolyte multilayers. The influence of the solution concentration of NaCl on the adsorption of starch onto silicon oxide substrates and on the formation of multilayers was investigated using stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). The wet adhesive properties of the starch multilayers were examined by measuring pull-off forces with the AFM colloidal probe technique. It was shown that polyelectrolyte multilayers (PEM) can be successfully constructed from cationic starch and anionic starch at electrolyte concentrations of 1 mM NaCl and 10 mM NaCl. The water content of the PEMs was approximately 80% at both electrolyte concentrations. However, the thickness of the PEMs formed at 10 mM NaCl was approximately twice the thickness formed at 1 mM NaCl. The viscoelastic properties of the starch PEMs, modeled as Voigt elements, were dependent on the polyelectrolyte that was adsorbed in the outermost layer. The PEMs appeared to be more rigid when capped by anionic starch than when capped by cationic starch. The wet adhesive pull-off forces increased with layer number and were also dependent on the polyelectrolyte adsorbed in the outermost layer. Thus, starch PEM treatment has a large potential for increasing the adhesive interaction between solid substrates to levels higher than can be reached by a single layer of cationic starch.  相似文献   

13.
The distribution of bovine serum albumin and ferritin within polyelectrolyte microcapsules was studied by transmission electron and confocal microscopy at the pH range 2–5. It was estimated that the protein’s distribution depends on the isoelectric point (pI) and first polyelectrolyte used for the preparation of the capsule shell. The peptide is placed in the bulk of capsule if the pH values of the medium are close to the isoelectric point of the protein and polycation was used as a first polyelectrolyte layer. If the first polyelectrolyte was polyanion, the protein is located near the internal surface of the shell. The protein is situated near the internal surface of the shell for both polyelectrolytes when pH is equal to pI.  相似文献   

14.
The effects of added cetyltrimethylammonium bromide (CTAB)-amylose complex on retrogradation of some starches (waxy-maize, maize, and potato starch) and on amylopectin from potato have been studied by differential scanning calorimetry (DSC). The starches and amylopectin samples with added CTAB-amylose complex received four different heat treatments prior to storage and DSC measurements that either melted the complex or left the complex intact. The calorimetry measurements showed that intact CTAB-amylose complex had much less effect on decreasing the retrogradation of the starches and the amylopectin than samples with melted complex prior to measurements. This is discussed in relation to possible complex formation of amylopectin and lipids and the effects of adding uncomplexed lipids on the retrogradation of waxy starches and amylopectin.  相似文献   

15.
A natural polysaccharide called schizophyllan (SPG) can form a complex with polynucleotides, and the complex has been shown to deliver biofunctional short DNAs such as antisense DNAs and CpG-DNAs. Although it is a novel and efficient method, there is a drawback: attachment of homo-polynucleotide tails [for example, poly(dA) or poly(C)] to the end of DNA is necessary to stabilize the complex, because DNA heterosequences cannot bind to SPG. The aim of this paper is to present an alternative method in which SPG/DNA complexes can be made without using the tails. The basic strategy is as follows: since SPG can form hydrophobic domains in aqueous solutions, hydrophobic objects should be encapsulated by this domain. DNA alone is highly hydrophilic; however, once DNA/polycation complexes are made, they should be included by the SPG hydrophobic domain. The aim of this paper is to prove the formation of the polycation/DNA/SPG ternary complex. Gel electrophoresis showed that presence of SPG influenced the migration pattern of polycation+DNA mixtures. With increasing the SPG ratio, the zeta potential (zeta) of the polycation+DNA+SPG mixture decreased drastically to reach almost zeta = 0 and the particle size distributions were altered due to the ternary complex formation. Confocal laser scanning microscopy revealed that the polycation/DNA/SPG ternary complexes showed high uptake efficiency when the complexes were exposed to macrophage-like cells (J774.A1). IL-12 secretion was enhanced when CpG-DNA was added as the ternary complex. These features can be ascribed to the fact that J774.A1 has a SPG recognition site called Dectin-1 on the cellular surface and the ternary complex can be ingested by this pathway.  相似文献   

16.
A new route to starch derivatives bearing hydrolyzable cationic groups was developed. This was based on reacting starch compounds with betaine derivatives in the presence of diisopropylcarbodiimide and 4-dimethylaminopyridine as coupling reagents in an aprotic polar solvent. Water-soluble starches with a perfectly controlled degree of substitution were thus obtained which were fully characterized by infrared, 1H and 13C spectroscopy and viscosity measurements. The cationic groups grafted on the polysaccharides are shown to hydrolyze slowly upon storage at room temperature.  相似文献   

17.
Polymeric nanoparticles have emerged as a promising approach for drug delivery systems. We prepared chitosan (CS)/sodium alginate (SAL) polyelectrolyte complex nanoparticles (CS/SAL NPs) via a simple and mild ionic gelation method by adding a CS solution to a SAL solution, and investigated the effects of molecular weight of the added CS, and the SAL:CS mass ratio on the formation of the polyelectrolyte complex nanoparticles. The well-defined CS/SAL NPs with near-monodisperse particle size of about 160 nm exhibited a pH stable structure, and pH responsive properties with a negatively or positively charged surface. The so-called “electrostatic sponge” structure of the polyelectrolyte complex nanoparticles enhanced their drug-loading capacity towards the differently charged model drug molecules, and favored controlled release. We also found that the drug-loading capacity was influenced by the nature of the drugs and the drug-loading media, while drug release was affected by the solubility of the drugs in the drug-releasing media. The biocompatibility and biodegradability of the polyelectrolytes in the polyelectrolyte complex nanoparticles were maintained by ionic interactions. These results indicate that CS/SAL NPs can represent a useful technique for pH-responsive drug delivery systems.  相似文献   

18.
Luo K  Yin J  Song Z  Cui L  Cao B  Chen X 《Biomacromolecules》2008,9(10):2653-2661
We synthesized methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) (mPEGGA) diblock copolymer by ring-opening polymerization of N-carboxy anhydride of gamma-benzyl-L-glutamate (NCA) using amino-terminated methoxy polyethylene glycol (mPEG) as macroinitiator. Polyelectrolyte complexation between mPEGGA as neutral-block-polyanion and chitosan (CS) as polycation has been scrutinized in aqueous solution as well as in the solid state. Water-soluble polyelectrolyte complexes (PEC) can be formed only under nonstoichiometric condition while phase separation is observed when approaching 1:1 molar mixing ratio in spite of the existence of hydrophilic mPEG block. This is likely due to mismatch in chain length between polyanion block of the copolymer and the polycation or hydrogen bonding between the components. Hydrodynamic size of primary or soluble PEC is determined to be about 200 nm, which is larger than those reported in some literatures. The increase in polyion chain length of the copolymer leads to the increase in the hydrodynamic size of the water-soluble PEC. Formation of spherical micelles by the mPEGGA/CS complex at nonstoichiometirc condition has been confirmed by the scanning electron microscopy observation and transmission electron microscopy observations. The homopolymer CS experiences attractive interaction with both mPEGA and PGA blocks within the copolymer. Competition of hydrogen bonding and electrostatic force in the system or hydrophilic mPEG segments weakens the electrostatic interaction between the oppositely charged polyions. The existence of hydrogen bonding restrains the mobility of mPEG chains of the copolymer and completely prohibits crystallization of mPEG segments. In vitro culture of human fibroblasts indicates that mPEGGA/CS-based materials have potential in biomedical application, especially in tissue engineering.  相似文献   

19.
The incorporation of proteins into microparticles fabricated by layer-by-layer adsorption of oppositely charged polyelectrolytes (dextran sulfate and protamine) on protein microaggregates was studied. Microaggregates with insulin were prepared by two different techniques: 1) formation of insoluble polyelectrolyte complex consisting of insulin and dextran sulfate (aggregate size of 7-20 micro m), or 2) salting out of insulin from solution by sodium chloride (aggregate size of 5-13 micro m). Microparticles varying in the number of cycles (from 1 to 8) of polyelectrolyte adsorption on protein aggregates were examined and compared. Morphology of the microparticles was studied by scanning electron and optical microscopy. It was shown that polyelectrolyte microparticles retained the shape and dimensions of the initial protein aggregates used as a template. Ultrasonication of microparticles obtained using salted out protein aggregates resulted in the formation of stable nanoparticles (100-200 nm). Regulation of protein release from the microparticles of both types by varying the number of polyelectrolyte adsorption cycles and pH of the medium was demonstrated. Insulin not bound to polyelectrolytes was released from the microparticles at pH values between 6 and 8, which corresponds to the pH of the human small intestine and ileum.  相似文献   

20.
Polyelectrolyte complex (polyplex) formation was studied by employing tapping mode atomic force microscopy (AFM) and an ethidium bromide fluorescence assay. The polycations chitosan and poly-L-lysine were used to compact DNA and the stability of the polyplexes was evaluated upon exposure to competing polyanions (alginate and xanthan). Furthermore, the relative preference of these polycations for DNA and the competing polyanion was investigated. The results showed that neither poly-L-lysine nor chitosan displayed any selectivity in binding to DNA relative to the competing polyanions, demonstrating the importance of electrostatics in the binding of a polycation to a polyanion. However, the ability of the polyanions to destabilize the DNA-polycation complexes depended on both the polyanion and the polycation employed, indicating that polymer-specific properties are also important for the complexation behavior and polyplex stability. Destabilization experiments further showed that annealing yielded complexes that were less prone to disruption upon subsequent exposure to alginate. Annealing experiments of plasmid DNA-chitosan complexes showed an increased fraction of rods following temperature treatment, indicating that the rods most likely are the more stable morphology for this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号