首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A group II intron containing the matK gene, which encodes a splicing-associated maturase, was found in the trnK (lysine tRNA) exon in the chloroplast genome of the six extant genera of green algae in the family Characeae, which among green algae are the sister group to embryophytes (land plants). The characean trnK intron (~2.5 kilobases [kb]) and matK ORF (~1.5 kb) are comparable in size to the intron and ORF of land plants, in which they are similarly found inserted in the trnK exon. Domain X, a sequence of conserved amino acid residues within matK, occurs in the Characeae. Phylogenetic analysis using maximum likelihood (GTR + I + gamma likelihood model) and parsimony (branch and bound search) yielded one tree with high bootstrap support for all branches. The matK tree was congruent with the rbcL tree for the same taxa. The number and proportion of informative sites was higher in matK (501, 31% of matK sequence) compared to rbcL (122, 10%). Characeae branch lengths were on average more than five times longer for matK compared to rbcL and provided better resolution within the Characeae. These findings along with recent genomic analyses demonstrate that the intron and matK invaded the chloroplast genome of green algae prior to the evolution of land plants.  相似文献   

2.
We investigated the phylogenetic and biogeographic relationships of natural populations of diploid and tetraploid Fagopyrum cymosum (Polygonaceae). Intraspecific variation of chloroplast DNA sequences was detected in three regions approximately 5 kb long in total: the 3' end of rbcL, accD and associated intergenic spacer region, the trnC (GCA)-rpoB spacer region, the trnK (UUU) intron, and the matK region. The accessions of F. cymosum were divided into two major groups, a Tibet-Himalayan clade and a Yunnan-Sichuan clade, with a high bootstrap probability. It was estimated that these two clades diverged about 0.7 million years ago. The geographical and climatic interruption by the Hengduanshan mountains might have caused the genetic divergence in F. cymosum. Autotetraploid populations of F. cymosum have arisen allopatrically from a diploid progenitor at least twice, once in the Tibet-Himalayan area and once in the Yunnan-Sichuan area. This conclusion reinforces a previous study based on allozyme variation. We also found that F. tataricum, a close relative of F. cymosum, was completely included within the Tibet-Himalayan clade in the phylogenetic tree. This suggests that F. tataricum speciated from F. cymosum in the Tibet-Himalayan area.  相似文献   

3.
A Molecular Phylogeny of Costaceae (Zingiberales)   总被引:1,自引:0,他引:1  
The phylogenetic relationships of Costaceae, a tropical monocotyledonous family sister to the gingers (Zingiberaceae), were investigated with a combination of two chloroplast loci (the trnL-F locus, including the trnL intron, the 3'trnL exon, and the trnL-F intergenic spacer, and the trnK locus, including the trnK intron and the matK coding region) and one nuclear locus (ITS1-5.8s-ITS2). The resulting parsimony analysis of selected taxa that demonstrate the range of floral morphological variation in the family shows that the Cadalvena-type [corrected] floral morphology is ancestral to the group and that both Tapeinochilos species and a Monocostus + Dimerocostus clade represent recent divergences. The genus Costus is broadly paraphyletic but Costus subgenus Eucostus K. Schum. represents a large monophyletic radiation that is poorly resolved. Within this clade, secondary analyses suggest that pollination syndrome, traditionally used for taxonomic and classification purposes within the genus Costus, is a relatively plastic trait of limited phylogenetic utility. This represents the first detailed investigation into intrageneric and interspecific evolutionary relationships within the family Costaceae and presents some novel evolutionary trends with respect to floral morphology and biogeography.  相似文献   

4.
The matK gene has been among the most useful loci for resolving plant phylogenetic relationships at different evolutionary time-scales, but much less is known about the phylogenetic utility of the flanking trnK intron, especially for deep level phylogenetics. We compared the relative performance of matK and trnK intron regions for resolving the relationships of the early diverging eudicots (angiosperms). The two regions display similar nucleotide compositions and distributions of rate variation among sites. The trnK intron sequences also provide similar levels of phylogenetic information per-site as matK. Combining the trnK intron sequences with matK increases overall bootstrap support for the early diverging eudicots compared to analyses of matK alone. MP, ML and Bayesian analyses provide strong support for eudicots, the sister group relationship of Ranunculales to remaining eudicots, and a Buxales+Trochodendraceae+core eudicots clade. matK and the trnK intron support conflicting positions for Buxales and Trochodendrales in relation to the core eudicots.  相似文献   

5.
Phylogenetic relationships among the three families and 12 living genera of cycads were reconstructed by distance and parsimony criteria using three markers: the chloroplast matK gene, the chloroplast trnK intron and the nuclear ITS/5.8S rDNA sequence. All datasets indicate that Cycadaceae (including only the genus Cycas) is remotely related to other cycads, in which Dioon was resolved as the basal-most clade, followed by Bowenia and a clade containing the remaining nine genera. Encephalartos and Lepidozamia are closer to each other than to Macrozamia. The African genus Stangeria is embedded within the New World subfamily Zamiodeae. Therefore, Bowenia is an unlikely sister to Stangeria, contrary to the view that they form the Stangeriaceae. The generic status of Dyerocycas and Chigua is unsupportable as they are paraphyletic with Cycas and the Zamia, respectively. Nonsense mutations in the matK gene and indels in the other two datasets lend evidence to reinforce the above conclusions. According to the phylogenies, the past geography of the genera of cycads and the evolution of character states are hypothesized and discussed. Within the suborder Zamiieae, Stangeria, and the tribe Zamieae evolved significantly faster than other genera. The matK gene and ITS/5.8S region contain more useful information than the trnK intron in addressing phylogeny. Redelimitations of Zamiaceae, Stangeriaceae, subfamily Encephalartoideae and subtribe Macrozamiineae are necessary.  相似文献   

6.
DNA barcoding is a biological technique that uses short and standardized genes or DNA regions to facilitate species identification. DNA barcoding has been used successfully in several animal and plant groups. Ligustrum (Oleaceae) species occur widely throughout the world and are used as medicinal plants in China. Therefore, the accurate identification of species in this genus is necessary. Four potential DNA barcodes, namely the nuclear ribosomal internal transcribed spacer (ITS) and three chloroplast (cp) DNA regions (rbcL, matK, and trnH–psbA), were used to differentiate species within Ligustrum. BLAST, character-based method, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capabilities of the chosen markers for discriminating 92 samples representing 20 species of this genus. The results showed that the ITS sequences have the most variable information, followed by trnH–psbA, matK, and rbcL. All sequences of the four regions correctly identified the species at the genus level using BLAST alignment. At the species level, the discriminating power of rbcL, matK, trnH–psbA, and ITS based on neighbor-joining (NJ) trees was 36.8%, 38.9%, 77.8%, and 80%, respectively. Using character-based and maximum parsimony (MP) tree methods together, the discriminating ability of trnH–psbA increased to 88.9%. All species could be differentiated using ITS when combining the NJ tree method with character-based or MP tree methods. Overall, the results indicate that DNA barcoding is an effective molecular identification method for Ligustrum species. We propose the nuclear ribosomal ITS as a plant barcode for plant identification and trnH–psbA as a candidate barcode sequence.  相似文献   

7.
Saniculiphyllum, a monotypic genus distributed in Southwest China, was thought to be extinct before our recent rediscovery. The taxonomic position of this genus has been enigmatic ever since its publication. It was originally treated as the only member of a distinct tribe Saniculiphylleae in the family Saxifragaceae. Some proposed a new family, Saniculophyllaceae, to accommodate this genus, although its affinities are clearly with members of Saxifragaceae. Here we analyzed six DNA regions, the nuclear ribosomal ITS and 26S rDNA and the plastid rbcL, matK, trnL-trnF, psbA-trnH genes, spacers, and intron to explore the phylogenetic position of Saniculiphyllum within Saxifragaceae. The combined nuclear and chloroplast dataset includes 63 ingroup species, representing all genera but Hieronymusia in the family. Results from likelihood, parsimony and Bayesian phylogenetic methods corroborate earlier results. Two clades of Saxifragaceae, the Heucheroid and Saxifragoid clades, were recovered. The topologies obtained from different analyses confirm the placement of Saniculiphyllum in Saxifragaceae, but our analyses reveal that Saniculiphyllum is embedded within the large Heucheroid clade. However, the closest relatives of Saniculiphyllum within the Heucheroid clade remain unclear. Combined with morphological data, our results suggest that Saniculiphyllum should best be regarded as a highly distinctive lineage within the Heucheroid clade of Saxifragaceae. Morphological novelties and conservation status of Saniculiphyllum are also presented.  相似文献   

8.
The potential application of DNA barcodes of plastid (matK, trnH–psbA, petD, and rbcL) and nuclear (internal transcribed spacer (ITS) of rDNA) DNA regions was investigated for 25 Hedyotis taxa. The ITS showed the best species discrimination by resolving 23 of the species as exclusive lineages with no shared alleles between any of the 24 distinct species (H. assimilis and H. mellii are not supported as distinct species based on our molecular and morphological data). Conversely, rbcL performed the worst and only resolved 10 of the species as exclusive lineages, and 10 species with shared alleles. Using ITS has the advantage of high PCR amplification success and it provides good intra- and interspecific variation distribution patterns. The most powerful plastid markers were petD and trnH–psbA, but we could amplify and sequence trnH–psbA for only 83% of the accessions sampled. Combination of ITS and petD performed extremely well, with all 24 of the distinct species resolved as exclusive lineages and no shared alleles between any of the distinct species. We therefore recommend ITS, or a combination of ITS and petD, as the standard DNA barcode in Hedyotis, but acknowledge that there are no shared alleles between distinct species for matK and rbcL combined.  相似文献   

9.
Phylogenetic relationships were inferred using nucleotide sequences of the chloroplast gene matK for members of Cornales, a well-supported monophyletic group comprising Cornaceae and close relatives. The shortest trees resulting from this analysis were highly concordant with those based on previous phylogenetic analysis of rbcL sequences. Analysis of a combined matK and rbcL sequence data set (a total of 2652 bp [base pairs]) provided greater resolution of relationships and higher internal support for clades compared to the individual data sets. Four major clades (most inclusive monophyletic groups) of Cornales are indicated by both sets of genes: (1) Cornus-Alangium, (2) nyssoids (Nyssa-Davidia-Camptotheca)- mastixioids (Mastixia, Diplopanax), (3) Curtisia, and (4) Hydrangeaceae-Loasaceae. The combined evidence indicates that clades 2 and 3 are sisters, with clade 4 sister to the remainder of Cornales. These relationships are also supported by other lines of evidence, including synapomorphies in fruit and pollen morphology and gynoecial vasculature. Comparisons of matK and rbcL sequences based on one of the most parsimonious rbcL-matK trees indicate that matK has a much higher A-T content (66.9% in matK vs. 55.8% in rbcL) and a lower transition:transversion ratio (1.23 in matK vs. 2.21 in rbcL). The total number of nucleotide substitutions per site for matK is 2.1 times that of rbcL in Cornales. These findings are similar to recent comparisons of matK and rbcL in other dicots. Variable sites of matK are almost evenly distributed among the three codon positions (1.0:1.0:1.3), whereas variable sites of rbcL are mostly at the third position (1.8:1.0 :7.5). Among- lineages rates of nucleotide substitutions in rbcL are basically homogeneous throughout Cornales, but are more heterogeneous in matK.  相似文献   

10.
11.
秋海棠属植物种类繁多,形态变异多样,导致种类的系统放置混乱,近缘种类鉴定困难。利用DNA条形码实现物种快速准确的鉴定技术具有不受形态特征约束的优势,为秋海棠属植物的分类鉴定提供了新的方法。本研究选择4个DNA条形码候选片段(rbcL,matK,trnH psbA,ITS)对中国秋海棠属26种136个个体进行了分析。结果显示:叶绿体基因rbcL,matK和trnH psbA种内和种间变异小,对秋海棠属植物的鉴别能力有限;ITS/ITS2种内和种间变异大,在本研究中物种正确鉴定率达到100%/96%,可考虑作为秋海棠属DNA条形码鉴定的候选片段。研究结果支持中国植物条形码研究组建议将核基因ITS/ITS2纳入种子植物DNA条形码核心片段中的观点。  相似文献   

12.
The legume tribe Amorpheae comprises eight genera and 240 species with variable floral form. In this study, we inferred a phylogeny for Amorpheae using DNA sequence data from the plastid trnK intron, including matK, and the nuclear ribosomal ITS1, 5.8S, and ITS2. Our data resulted in a well-resolved phylogeny in which the tribe is divided into the daleoids (Dalea, Marina, and Psorothamnus), characterized by generally papilionaceous corollas, and the amorphoids (Amorpha, Apoplanesia, Errazurizia, Eysenhardtia, and Parryella), characterized by non-papilionaceous flowers. We found evidence for the paraphyly of Psorothamnus and for the monophyly of Dalea once D. filiciformis is transferred to monophyletic Marina. Errazurizia rotundata is more closely related to Amorpha than to the other errazurizias, and Eysenhardtia is supported to be monophyletic. The monotypic Parryella and Apoplanesia are placed within the amorphoids. Among Papilionoideae, trnK/matK sequence data provide strong evidence for the monophyly of Amorpheae and place Amorpheae as sister to the recently discovered dalbergioid clade.  相似文献   

13.
DNA barcoding is a new technology which can identify species rapidly based on short and standardized DNA sequences. Ligularia, a genus of Asteraceae with about 140 species, exhibits high morphological and ecological diversity, which makes the classification and species delimitation difficult, especially in the cases of closely related taxa. In this study, we tested four DNA core barcoding regions (ITS, matK, psbA trnH and rbcL) in 144 samples representing 35 species of Ligularia. The results revealed that the chloroplast regions (matK, psbA trnH and rbcL) have extremely low species identification rate due to low interspecific variation. Conversely, ITS sequence showed higher species identification rate (60%) and could discriminate the species which are difficult to identify. The combination of these four gene fragments did not improve the ability of species discrimination.  相似文献   

14.
15.
We compared the performances of the candidate loci for moss DNA barcoding and the primers used in amplifying the loci. Primers for three coded loci (matK, rps4 and rbcL a) and four non coded loci (atpB rbcL, atpF H, psbK I and trnH psbA) of the chloroplast genome, one from the mitochondrial genome (nad5), and one from the nucleus genome (ITS2) were evaluated. Seventy four samples representing 14 species belonging to five genera of Trachypodoaceae (or Meteoriaceae) were screened. All primers for matK and a pair of primers for trnH psbA failed. Low successes were encountered with the primers for atpF H and psbK I. The primers for psbK I produced several bands and the PCR products of atpF H were difficult to sequence. The powers of the remaining six loci were compared using the variability, identification success and the resolutions. It was found that ITS2 is the most promising candidate for DNA barcoding for mosses. Among the chloroplast genes, atpB rbcL exhibited the highest resolution. Although trnH psbA is very variable, it is too short to be an ideal barcode alone. Combinations of chloroplast genes were also tried and Ps of both atpB rbcL+trnH psbA and rbcL a++trnH psbA were 64% using NJ method. More additions of loci did not increase the resolution. No barcoding gap exists for all these loci. Phylogenetic analyses were carried out prior to the DNA barcoding evaluation and some taxonomic problems do exist. This study exemplifies the necessity of correct species delimitation and the adoption of both plastid and nuclear loci in plant DNA barcoding.  相似文献   

16.
蒟蒻薯属(Tacca)植物种间在形态上差别不大,导致分类上存在一定的困难。DNA条形码是一种利用短的DNA标准片段来鉴别和发现物种的方法。本研究利用核基因ITS片段和叶绿体基因trnH psbA, rbcL, matK片段对蒟蒻薯属6个种的DNA条形码进行研究,对4个DNA片段可用性,种内种间变异,barcode gap进行了分析,采用Tree based和BBA两种方法比较不同序列的鉴定能力。结果显示:单片段ITS正确鉴定率最高,片段组合rbcL+matK正确鉴定率最高。支持CBOL植物工作组推荐的条码组合rbcL+matK可作为蒟蒻薯属物种鉴定的标准条码,建议ITS片段作为候选条码。丝须蒟蒻薯Tacca integrifolia采自西藏的居群与马来西亚居群形成了2个不同的遗传分支,且两者在形态上也存在一定的差异,很可能是一个新种。  相似文献   

17.
18.
Phylogenetic relationships in the tribe Millettieae and allies in the subfamily Papilionoideae (Leguminosae) were reconstructed from chloroplast trnK/matK sequences. Sixty-two accessions representing 57 traditionally recognized genera of Papilionoideae were sampled, including 27 samples from Millettieae. Phylogenies were constructed using maximum parsimony and are well resolved and supported by high bootstrap values. A well-supported "core Millettieae" clade is recognized, comprising the four large genera Millettia, Lonchocarpus, Derris, and Tephrosia. Several other small genera of Millettieae are not in the core Millettieae clade. Platycyamus is grouped with Phaseoleae (in part). Ostryocarpus, Austrosteenisia, and Dalbergiella are neither in the core Millettieae or Phaseoleae clade. These taxa, along with core Millettieae and Phaseoleae, form a monophyletic sister group to Indigofereae. Cyclolobium and Poecilanthe are close to Brongniartieae. Callerya and Wisteria belong to a large clade that includes all the legumes that lack the inverted repeat in their chloroplast genome, which confirms previous rbcL and phytochrome gene family phylogenies. The evolutionary history of four characters was examined in Millettieae and allies: the presence of canavanine, inflorescence types, the dehiscence of pods, and the presence of winged pods. trnK/matK sequence analysis suggests that the presence of a pseudoraceme or pseudopanicle and the accumulation of nonprotein amino acids are phylogenetically informative for Millettieae and allies with only a few exceptions.  相似文献   

19.
Coding regions of the rbcL and matK genes of cp DNA and internal transcribed spacers (ITS) of nuclear ribosomal DNA were sequenced to study phylogenetic relationships within and among all four genera of Trilliaceae: Trillium, Paris, Daiswa and Kinugasa . The rbcL gene has evolved much slower than matK and in particular ITS; hence the phylogenetic trees based on the rbcL gene show a much lower resolution than trees based on either matK or ITS. The general topology of phylogenetic trees resulting from separate parsimony analyses of the matK and ITS sequences are relatively congruent, with the exception of the placement of T. pusillum . Both matK and ITS phylogenies reveal that T. rivale diverges at the base of the trees. In both trees, Paris, Daiswa and Kinugasa form a relatively weakly supported group. Within this group, the allo-octaploid Kinugasa japonica is the sister group of Daiswa species. The Paris–Daiswa – Kinugasa group, the major Trillium group, and T. undulatum and T. govanianum showed a loosely related topology, but their affinities are not evident according to these two molecular markers. However, phylogenetic analysis of amino acid sequences derived from matK shows that T. rivale together with clades T. undulatum–T. govanianum, Daiswa–Kinugasa and Paris is basally diverged as a sister group to the remainder of Trillium .  相似文献   

20.
Tertiary macrofossils of the flowering plant family Leguminosae (legumes) were used as time constraints to estimate ages of the earliest branching clades identified in separate plastid matK and rbcL gene phylogenies. Penalized likelihood rate smoothing was performed on sets of Bayesian likelihood trees generated with the AIC-selected GTR+ Gamma +I substitution model. Unequivocal legume fossils dating from the Recent continuously back to about 56 million years ago were used to fix the family stem clade at 60 million years (Ma), and at 1-Ma intervals back to 70 Ma. Specific fossils that showed distinctive combinations of apomorphic traits were used to constrain the minimum age of 12 specific internal nodes. These constraints were placed on stem rather than respective crown clades in order to bias for younger age estimates. Regardless, the mean age of the legume crown clade differs by only 1.0 to 2.5 Ma from the fixed age of the legume stem clade. Additionally, the oldest caesalpinioid, mimosoid, and papilionoid crown clades show approximately the same age range of 39 to 59 Ma. These findings all point to a rapid family-wide diversification, and predict few if any legume fossils prior to the Cenozoic. The range of the matK substitution rate, 2.1-24.6 x 10(-10) substitutions per site per year, is higher than that of rbcL, 1.6- 8.6 x 10(-10), and is accompanied by more uniform rate variation among codon positions. The matK and rbcL substitution rates are highly correlated across the legume family. For example, both loci have the slowest substitution rates among the mimosoids and the fastest rates among the millettioid legumes. This explains why groups such as the millettioids are amenable to species-level phylogenetic analysis with these loci, whereas other legume groups are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号