首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wound signalling in plants   总被引:10,自引:0,他引:10  
Plants undergoing the onslaught of wound-causing agents activate mechanisms directed to healing and further defence. Responses to mechanical damage are either local or systemic or both and hence involve the generation, translocation, perception, and transduction of wound signals to activate the expression of wound-inducible genes. Although the central role for jasmonic acid in plant responses to wounding is well established, other compounds, including the oligopeptide systemin, oligosaccharides, and other phytohormones such as abscisic acid and ethylene, as well as physical factors such as hydraulic pressure or electrical pulses, have also been proposed to play a role in wound signalling. Different jasmonic acid-dependent and -independent wound signal transduction pathways have been identified recently and partially characterized. Components of these signalling pathways are mostly similar to those implicated in other signalling cascades in eukaryotes, and include reversible protein phosphorylation steps, calcium/calmodulin-regulated events, and production of active oxygen species. Indeed, some of these components involved in transducing wound signals also function in signalling other plant defence responses, suggesting that cross-talk events may regulate temporal and spatial activation of different defences.  相似文献   

2.
Nitric oxide signalling in plants   总被引:13,自引:0,他引:13  
  相似文献   

3.
Daylight UV-B (UV-B) radiation (280–315 nm) is, because of its photochemical effects and potential destructive impact, an important environmental factor for plants. After decades of fruitless attempts, a receptor molecule, UVR8, for sensing of ambient UV-B radiation by plants has been characterized, and the initial steps in signal transduction have been identified. There are, however, other signaling pathways, and there are apparent contradictions in the literature. There is still much to find out about the complex signaling network in plants for processing of information about the daylight surrounding them.  相似文献   

4.
5.
Solar UV-B radiation reaching the Earth's surface is continually increased due to the stratospheric ozone layer depletion. UV-B radiation has been shown to have mutagenic effects damaging DNA, proteins and membranes. During evolution plants developed systems for UV-B perception and effective defense mechanisms. In this review the main UV-B effects, cytophysiological responses of plants and their interactions with microorganisms are analyzed. UV-B-induced signal transduction pathways in plant cells are discussed.  相似文献   

6.
Nitric oxide synthesis and signalling in plants   总被引:10,自引:0,他引:10  
As with all organisms, plants must respond to a plethora of external environmental cues. Individual plant cells must also perceive and respond to a wide range of internal signals. It is now well-accepted that nitric oxide (NO) is a component of the repertoire of signals that a plant uses to both thrive and survive. Recent experimental data have shown, or at least implicated, the involvement of NO in reproductive processes, control of development and in the regulation of physiological responses such as stomatal closure. However, although studies concerning NO synthesis and signalling in animals are well-advanced, in plants there are still fundamental questions concerning how NO is produced and used that need to be answered. For example, there is a range of potential NO-generating enzymes in plants, but no obvious plant nitric oxide synthase (NOS) homolog has yet been identified. Some studies have shown the importance of NOS-like enzymes in mediating NO responses in plants, while other studies suggest that the enzyme nitrate reductase (NR) is more important. Still, more published work suggests the involvement of completely different enzymes in plant NO synthesis. Similarly, it is not always clear how NO mediates its responses. Although it appears that in plants, as in animals, NO can lead to an increase in the signal cGMP which leads to altered ion channel activity and gene expression, it is not understood how this actually occurs.
NO is a relatively reactive compound, and it is not always easy to study. Furthermore, its biological activity needs to be considered in conjunction with that of other compounds such as reactive oxygen species (ROS) which can have a profound effect on both its accumulation and function. In this paper, we will review the present understanding of how NO is produced in plants, how it is removed when its signal is no longer required and how it may be both perceived and acted upon.  相似文献   

7.
8.
Phytochrome controlled signalling cascades in higher plants   总被引:7,自引:0,他引:7  
  相似文献   

9.
Light perception and signalling in higher plants   总被引:1,自引:0,他引:1  
  相似文献   

10.
Plants are able to acclimate to highly fluctuating light environment and evolved a short- and long-term light acclimatory responses, that are dependent on chloroplasts retrograde signalling. In this review we summarise recent evidences suggesting that the chloroplasts act as key sensors of light intensity changes in a wide range (low, high and excess light conditions) as well as sensors of darkness. They also participate in transduction and synchronisation of systemic retrograde signalling in response to differential light exposure of distinct leaves. Regulation of intra- and inter-cellular chloroplast retrograde signalling is dependent on the developmental and functional stage of the plastids. Therefore, it is discussed in following subsections: firstly, chloroplast biogenic control of nuclear genes, for example, signals related to photosystems and pigment biogenesis during early plastid development; secondly, signals in the mature chloroplast induced by changes in photosynthetic electron transport, reactive oxygen species, hormones and metabolite biosynthesis; thirdly, chloroplast signalling during leaf senescence. Moreover, with a help of meta-analysis of multiple microarray experiments, we showed that the expression of the same set of genes is regulated specifically in particular types of signals and types of light conditions. Furthermore, we also highlight the alternative scenarios of the chloroplast retrograde signals transduction and coordination linked to the role of photo-electrochemical signalling.  相似文献   

11.
Phospholipid signalling is mediated by phospholipid breakdown products generated by phospholipases. The enzymes from animals and plants generating known or potential lipid-derived second messengers are compared. Plants possess a phospholipase C and a phospholipase A2 both of which are agonist-activated. These agonists (auxin, elicitors, perhaps others) bind to the external surface of the plasma membrane. The target enzyme for potential plant lipid-derived second messengers is lipid-activated protein kinase but the possibility that other enzymes may be also lipid-modulated should not be precluded.Abbreviations DAG diacylglycerol - CDPK calmodulin-like domain protein kinase - PLA2 phospholipase A2 - PLC phospholipase C - PLD phospholipase D - PKC protein kinase C - PS phosphatidylserine  相似文献   

12.
13.
14.
Herbivory-induced signalling in plants: perception and action   总被引:1,自引:0,他引:1  
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses.  相似文献   

15.
16.
Reaction of savanna plants from Botswana on UV-B radiation   总被引:1,自引:0,他引:1  
The annual savanna grasses Chloris virgata (C4) and Tragus berteronianus (C3) and the tree Acacia tortilis were exposed in a greenhouse to elevated UV-B radiation (16.8 kJ m-2 d-1 UV-BBe) and to no UV-B and grown on a poor and a rich soil for one life-cycle (grasses) and one growing season (Acacia). UV-B radiation had no effect on biomass production and caryopses mass of both annual grasses. The longevity of the cotyledons of A. tortilis was shortened by 4 to 10 days under enhanced UV-B radiation, which also hampered the translocation of Fe, Mg and Mn from the cotyledons to the seedling and the retranslocation of Mn on both soil types and that of P on fertile soil out of senescent leaves. At the end of the growth period (190 days after germination), photosynthesis of UV-B radiated leaves of A. tortilis was significantly decreased and supported the tendency of decreased biomass of UV-B radiated plants. It is concluded that from the investigated savanna species the grasses are relatively well adapted to increased UV-B due to their actual exposure to high UV-B radiation under Botswana conditions, whereas saplings of A. tortilis are more sensitive to UV-B radiation.  相似文献   

17.
Tomato (Lycopersicon esculentum Mill. cv. PKM 1) plants growing under field conditions were exposed for 15 d to solar radiation with UV-B component (280 - 320 nm) enhanced to 6.3 kJ m-2 d-1. This simulated a 15% stratospheric ozone depletion over Madurai (9° 50′ N latitude). Lipid peroxidation in the leaves of UV-B treated plants was 32% higher compared to the control. Superoxide dismutase (SOD) and catalase activities registered parallel promotion by 126 and 50 %, respectively, in the UV-B treated plants. Further, the contents of total phenols and anthocyanins in the leaves have also been enhanced by 40 and 156%, respectively. On the contrary, polyphenol oxidase activity demonstrated a 58 % inhibition in the leaves of UV-B treated plants. While anthocyanins and phenols are proposed to act as antioxidants, the reduction in polyphenol oxidase activity may maintain the turnover of phenols in the UV-B treated plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Nitric oxide (NO) in plant cell mediates processes of growth and development starting from seed germination to pollination, as well as biotic and abiotic stress tolerance. However, proper understanding of the molecular mechanisms of NO signalling in plants has just begun to emerge. Accumulated evidence suggests that in eukaryotic cells NO regulates functions of proteins by their post-translational modifications, namely tyrosine nitration and S-nitrosylation. Among the candidates for NO-downstream effectors are cytoskeletal proteins because of their involvement in many processes regulated by NO. This review discusses new insights in plant NO signalling focused mainly on the involvement of cytoskeleton components into NO-cascades. Herein, examples of NO-related post-translational modifications of cytoskeletal proteins, and also indirect NO impact, are discussed. Special attention is paid to plant α-tubulin tyrosine nitration as an emerging topic in plant NO research.  相似文献   

19.
Sunflower plants were grown hydroponically under controlled conditions with the root systems confined in small containers. Root confinement inhibited the growth of sunflower plants as indicated by reduction in both leaf and cotyledon area and root and shoot fresh weight. This effect was more pronounced in shoots. Root confinement favored the accumulation of potassium in the roots and shoots, and the exudation of potassium and water in excised roots. Xylem sap from root confined plants inhibited cotyledon expansion as revealed by bioassay with decapited sunflower seedlings. In addition decapited control plants incubated in ABA solution also showed cotyledon growth reduction. Xylem sap ABA analysis indicated a 7-times higher concentration in root confined than control plants. Our results suggest the synthesis of a chemical signal in the roots of plants subjected to mechanical stress which can be responsible for the inhibition of plant growth.  相似文献   

20.
Long-distance CO(2) signalling in plants.   总被引:3,自引:0,他引:3  
Stomatal numbers are tightly controlled by environmental signals including light intensity and atmospheric CO(2) partial pressure. This requires control of epidermal cell development during the early phase of leaf growth and involves changes in both the density of cells on the leaf surface and the proportion of cells that adopt a stomatal fate. This paper reviews the current understanding of how stomata develop and describes recent advances that have given insights into the regulatory mechanisms involved using mutant Arabidopsis plants that implicates a role for long-chain fatty acids in cell-to-cell communication. Evidence is presented which indicates that long-distance signalling from mature to newly developing leaves forms part of the mechanism by which stomatal development responds to environmental cues. Analysis of mutant plants suggests that the plant hormones abscisic acid, ethylene and jasmonates are implicated in the long-distance signalling pathway and that the action may be mediated by reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号