首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
来自太阳光谱中的UV-B辐射被认为是一种重要的环境信号,可以被植物感受并诱导植物调整自身生长和发育状态以适应环境。人们对植物中光敏色素、隐花色素和蓝光受体向光素的研究已非常深入,但对植物响应UV-B的机制仅在最近才取得一些突破性进展。这些研究发现,植物中存在着UV-B受体UVR8(UV Resistance Locus 8)。目前认为,UVR8二聚体感应UV-B后瞬间解聚为单体,并与E3泛素连接酶COP1(constitutively photomorphogenic 1)相互作用,从而激活UV-B响应基因的表达。该文从UVR8的发现、UVR8的结构和感受UV-B机制、UVR8二聚体重新形成以及UV-B信号传导与可见光信号传导途径间的差异等方面综述了关于UV-B受体UVR8的最新研究成果。  相似文献   

2.
Plants perceive UV-B radiation as an informational signal by a pathway involving UVR8 as UV-B photoreceptor, activating photomorphogenic and acclimation responses. In contrast, the response to UV-B as an environmental stress involves mitogen-activated protein kinase (MAPK) signalling cascades. Whereas the perception pathway is plant specific, the UV-B stress pathway is more broadly conserved. Knowledge of the UV-B stress-activated MAPK signalling pathway in plants is limited, and its potential interplay with the UVR8-mediated pathway has not been defined. Here, we show that loss of MAP kinase phosphatase 1 in the mutant mkp1 results in hypersensitivity to acute UV-B stress, but without impairing UV-B acclimation. The MKP1-interacting proteins MPK3 and MPK6 are activated by UV-B stress and are hyperactivated in mkp1. Moreover, mutants mpk3 and mpk6 exhibit elevated UV-B tolerance and partially suppress the UV-B hypersensitivity of mkp1. We show further that the MKP1-regulated stress-response MAPK pathway is independent of the UVR8 photoreceptor, but that MKP1 also contributes to survival under simulated sunlight. We conclude that, whereas UVR8-mediated acclimation in plants promotes UV-B-induced defence measures, MKP1-regulated stress signalling results when UV-B protection and repair are insufficient and damage occurs. The combined activity of these two mechanisms is crucial to UV-B tolerance in plants.  相似文献   

3.
拟南芥(Arabidopsis thaliana)蛋白UVR8(UV RESISTANCE LOCUS 8)是UV-B特异的光受体,介导UV-B诱导的光形态建成。无UV-B照射时,UVR8以二聚体的形式存在于细胞质和细胞核中。接收到UV-B光信号后,细胞质中的UVR8转移到细胞核中并解聚,之后与E3泛素连接酶COP1(CONSTITUTIVELY PHOTOMORPHOGENIC 1)相互作用,调节一系列重要的UV防御基因的表达。UVR8除了作为UV-B特异的光受体,在细胞中也具有重要作用,协调整个植物体对UV-B的应答。该文重点综述了UVR8蛋白的结构、生理功能及其介导的UV-B光信号转导分子机制等方面的研究进展。  相似文献   

4.
In Arabidopsis, ultraviolet (UV)-B-induced photomorphogenesis is initiated by a unique photoreceptor UV RESISTANCE LOCUS 8 (UVR8) which utilizes its tryptophan residues as internal chromophore to sense UV-B. As a result of UV-B light perception, the UVR8 homodimer shaped by its arginine residues undergoes a conformational switch of monomerization. Then UVR8 associates with the CONSTITUTIVELY PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA (COP1-SPA) core complex(es) that is released from the CULLIN 4-DAMAGED DNA BINDING PROTEIN 1 (CUL4-DDB1) E3 apparatus. This association, in turn, causes COP1 to convert from a repressor to a promoter of photomorphogenesis. It is not fully understood, however, regarding the biological significance of light-absorbing and dimer-stabilizing residues for UVR8 activity in photomorphogenic UV-B signaling. Here, we take advantage of transgenic UVR8 variants to demonstrate that two light-absorbing tryptophans, W233 and W285, and two dimer-stabilizing arginines, R286 and R338, play pivotal roles in UV-B-induced photomorphogenesis. Mutation of each residue results in alterations in UV-B light perception, UVR8 monomerization and UVR8-COP1 association in response to photomorphogenic UV-B. We also identify and functionally characterize two constitutively active UVR8 variants, UVR8W285A and UVR8R338A, whose photobiological activities are enhanced by the repression of CUL4, a negative regulator in this pathway. Based on our molecular and biochemical evidence, we propose that the UVR8-COP1 affinity in plants critically determines the photomorphogenic UV-B signal transduction coupling with UVR8-mediated UV-B light perception.  相似文献   

5.
6.
7.
Ultraviolet-B (UV-B) radiation has a wavelength range of 280–315 nm. Plants perceive UV-B as an environmental signal and a potential abiotic stress factor that affects development and acclimation. UV-B regulates photomorphogenesis including hypocotyl elongation inhibition, cotyledon expansion, and flavonoid accumulation, but high intensity UV-B can also harm plants by damaging DNA, triggering accumulation of reactive oxygen species, and impairing photosynthesis. Plants have evolved “sunscreen” flavonoids that accumulate under UV-B stress to prevent or limit damage. The UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) plays a critical role in promoting flavonoid biosynthesis to enhance UV-B stress tolerance. Recent studies have clarified several UVR8-mediated and UVR8-independent pathways that regulate UV-B stress tolerance. Here, we review these additions to our understanding of the molecular pathways involved in UV-B stress tolerance, highlighting the important roles of ELONGATED HYPOCOTYL 5, BRI1-EMS-SUPPRESSOR1, MYB DOMAIN PROTEIN 13, MAP KINASE PHOSPHATASE 1, and ATM- and RAD3-RELATED. We also summarize the known interactions with visible light receptors and the contribution of melatonin to UV-B stress responses. Finally, we update a working model of the UV-B stress tolerance pathway.

Recent findings that update our understanding of the molecular pathway for ultraviolet-B radiation stress responses in plants are summarized.  相似文献   

8.
Low-fluence and long-wavelength UV-B light promotes photomorphogenic development in Arabidopsis. CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is a positive regulator in this pathway while it is a negative regulator of the traditional photomorphogenesis triggered by far-red and visible light. We have recently reported the mechanism by which the switch of COP1 function is accomplished in distinct light contexts. In response to photomorphogenic UV-B, the photoactivated UV RESISTANCE LOCUS 8 (UVR8) associates with the COP1- SUPRESSOR OF PHYA (SPA) core complexes, resulting in the physical and functional disassociation of COP1-SPA from the CULLIN4-DAMAGED DNA BINDING PROTEIN 1 (CUL4-DDB1) E3 scaffold. These UV-B dependent UVR8-COP1-SPA complexes promote the stability and activity of ELONGATED HYPOCOTYL 5 (HY5), and eventually cause COP1 to switch from repressing to promoting photomorphogenesis. In addition, it is possible that CUL4-DDB1 might simultaneously recruit alternative DDB1 BINDING WD40 (DWD) proteins to repress this UV-B-specific signaling. Further investigation is required, however, to verify this hypothesis. Overall, the coordinated organization of various protein complexes facilitates an efficient and balanced UV-B signaling.  相似文献   

9.
Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor specifically for UV-B light that initiates photomorphogenic responses in plants. UV-B exposure causes rapid conversion of UVR8 from dimer to monomer, accumulation in the nucleus, and interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 in UV-B responses. Studies in yeast and with purified UVR8 implicate several tryptophan amino acids in UV-B photoreception. However, their roles in UV-B responses in plants, and the functional significance of all 14 UVR8 tryptophans, are not known. Here we report the functions of the UVR8 tryptophans in vivo. Three tryptophans in the β-propeller core are important in maintaining structural stability and function of UVR8. However, mutation of three other core tryptophans and four at the dimeric interface has no apparent effect on function in vivo. Mutation of three tryptophans implicated in UV-B photoreception, W233, W285, and W337, impairs photomorphogenic responses to different extents. W285 is essential for UVR8 function in plants, whereas W233 is important but not essential for function, and W337 has a lesser role. Ala mutants of these tryptophans appear monomeric and constitutively bind COP1 in plants, but their responses indicate that monomer formation and COP1 binding are not sufficient for UVR8 function.  相似文献   

10.
11.
12.
中波紫外线UV-B(280~320nm)是植物必需的太阳光线的组成部分,具有明显的双重效应:一方面UV-B在强度较高时,就触发产生大量活性氧对DNA、蛋白质以及生物膜等造成伤害,同时植物通过抗氧化系统对其作出防御反应以减轻伤害;另一方面,低强度的UV-B是植物生长发育的光信号因子之一,经由UVR8等光受体介导中、低、极低强度的UV-B信号,可能通过几个分子途径控制相关基因的表达,分别对植物的UV-B保护基因表达、形态建成、昼夜节律、生长发育等进行调控。目前对UVR8介导的低强度UV-B信号转导的分子机制研究相对深入。在本文中,将对UV-B生理效应分子机制的最新研究进展作一个比较全面的介绍。  相似文献   

13.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

14.
  • The Ultraviolet Resistance Locus 8 (UVR8) in plants recognizes ultraviolet-B (UV-B) light and plays a crucial role in regulating plant growth through a series of signal transduction events. However, the UVR8 in monocotyledon crops has not yet been systematically analysed.
  • We identified BdUVR8 (BRADI_3g45740) from the genome of Brachypodium distachyon, a relative of wheat, by analysing the phylogenetic tree, the gene expression pattern, detecting accumulation of UV-B response metabolites, and checking for phenotype recovery.
  • The BdUVR8 protein sequence is similar to the known UVR8 of other species. The phylogenetic tree of UVR8 shows clear divergence between dicotyledons and monocotyledons. Expression analysis revealed that UV-B downregulates BdUVR8 by 70% and upregulates the chalcone synthase (BdCHS) gene 3.4-fold in B. distachyon. The pCAMBIA1300::BdUVR8-mCherry construct introduced into Arabidopsis uvr8 mutants showed that the BdUVR8 protein is localized in the cytoplasm and translocates into the nucleus in response to UV-B irradiation. The introduction of BdUVR8 into uvr8 rescued hypocotyl elongation caused by UV-B and restored expression of HY5, Chalcone synthase, and Flavanone 3-hydroxylase, as well as accumulation of total flavonoids.
  • Together, our results show that BdUVR8 is a photoreceptor that perceives UV-B in B. distachyon.
  相似文献   

15.
16.
17.
Stratospheric ozone depletion leads to enhanced UV-B radiation. Therefore, the capacity of reproductive cells to cope with different spectral irradiance was investigated in the laboratory. Zoospores of the upper sublittoral kelp Saccorhiza dermatodea were exposed to varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400-700 nm; =P), PAR+UV-A radiation (UV-A, 320-400 nm; =PA), and PAR+UV-A+UV-B radiation (UV-B, 280-320 nm; =PAB). Structural changes, localization of phlorotannin-containing physodes, accumulation of UV-absorbing phlorotannins, and physiological responses of zoospores were measured after exposure treatments as well as after 2-6 d recovery in dim white light (8 mumol photon m(-2) s(-1)). Physodes increased in size under PAB treatment. Extrusion of phlorotannins into the medium and accumulation of physodes was induced not only under UVR treatment but also under PAR. UV-B radiation caused photodestruction indicated by a loss of pigmentation. Photosynthetic efficiency of spores was photoinhibited after 8 h exposure to 22 and 30 mumol photon m(-2) s(-1) of PAR, while supplement of UVR had a significant additional effect on photoinhibition. A relatively low recovery of photosystem II function was observed after 2 d recovery in spores exposed to 1.7 x 10(4) J m(-2) of UV-B, with a germination rate of only 49% of P treatment after 6 d recovery. The amount of UV-B-induced DNA damage measured as cyclobutane-pyrimidine dimers (CPDs) increased with the biologically effective UV-B dose (BED(DNA)). Significant removal of CPDs indicating repair of DNA damage was observed after 2 d in low white light. The protective function of phlorotannins has restricted efficiency for a single cell. Within a plume of zoospores, however, each cell can buffer each other and protect the lower layer of spores from excessive radiation. Exudation of phlorotannins into the water can also reduce the impact of UV-B radiation on UV-sensitive spores. The results of this study showed that the impact of UVR on reproductive cells can be mitigated by protective and repair mechanisms.  相似文献   

18.
UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.  相似文献   

19.
该研究采用RACE扩增技术克隆了一个紫花苜蓿UV-B光受体基因(MsUVR8),在生物信息学分析基础上,采用农杆菌介导法获得了该基因过表达愈伤组织,并对UV-B辐射处理后MsUVR8过表达愈伤组织及其野生型中的类黄酮、黄酮醇、花青素、过氧化氢(H_(2)O_(2))、超氧阴离子(O_(2)^(-·))含量以及UV-B信号通路相关基因的表达进行检测分析,以探讨MsUVR8基因的生物学功能,为揭示植物响应UV-B胁迫的分子机制奠定理论基础。结果表明:(1)成功克隆获得紫花苜蓿MsUVR8基因CDS序列834 bp,且MsUVR8与蒺藜苜蓿MtUVR8基因序列相似度高达95%以上;MsUVR8蛋白形成了不完整的β-折叠结构,系统发育分析显示其与鹰嘴豆属于同一分支。(2)对MsUVR8过表达系检测发现,紫花苜蓿MsUVR8过表达愈伤组织(UVR8-OE)中类黄酮含量较野生型愈伤组织(WT)明显升高,而且经UV-B辐射后的UVR8-OE类黄酮物质含量较WT进一步显著升高。(3)DPBA荧光标记实验发现,UV-B辐射大大促进了细胞中黄酮醇的合成,且UV-B辐射后的UVR8-OE中黄酮醇含量最高。(4)DAB和NBT染色显示,UV-B处理后WT中活性氧(H_(2)O_(2)和O_(2)^(-·))的积累增加,而在UV-B辐射处理与未处理的UVR8-OE中H_(2)O_(2)和O_(2)^(-·)的积累无明显差异,表明MsUVR8可增强植物组织细胞的抗氧化性能,并可降低UV-B胁迫引起的氧化损伤。(5)UV-B辐照后,WT中PAL、CHS和FLS表达被激活而显著提高,UVR8-OE中的4种基因表达均达到最大,且较其他3个处理组均显著增强。研究认为,紫花苜蓿MsUVR8被UV-B激活后,促进了类黄酮合成相关基因的表达,并激活了类黄酮合成关键酶的活性,从而提高了类黄酮物质的合成效率,增强了UV-B胁迫条件下植物愈伤组织的抗氧化能力。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号