首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adult brain is capable of considerable structural and functional plasticity and the study of hormone actions in brain has contributed to our understanding of this important phenomenon. In particular, stress and stress-related hormones such as glucocorticoids and mineralocorticoids play a key role in the ability of acute and chronic stress to cause reversible remodeling of neuronal connections in the hippocampus, prefrontal cortex, and amygdala. To produce this plasticity, these hormones act by both genomic and non-genomic mechanisms together with ongoing, experience-driven neural activity mediated by excitatory amino acid neurotransmitters, neurotrophic factors such as brain derived neurotrophic factor, extracellular molecules such as neural cell adhesion molecule, neuropeptides such as corticotrophin releasing factor, and endocannabinoids. The result is a dynamic brain architecture that can be modified by experience. Under this view, the role of pharmaceutical agents, such as antidepressants, is to facilitate such plasticity that must also be guided by experiences.  相似文献   

2.
Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network.  相似文献   

3.
Previous studies have revealed that the neuropeptide hormone oxytocin (OT) has developmental effects on subsequent social behavior and on mechanisms underlying social behavior such as OT neurons and estrogen receptor alpha. This suggests that OT might also have developmental effects on neural responses to social stimuli. This was tested in socially monogamous prairie voles (Microtus ochrogaster) by manipulating OT on the first day of life and then assessing the response to a heterosexual pairing in adulthood. The response to cohabitation was assessed by quantifying neural activation in regions of the brain associated with sociosexual behavior and anxiety using c-Fos immunoreactivity. Additionally, immunocytochemistry was used to label OT and vasopressin neurons and plasma was assayed for both neuropeptides. Treatment effects were evident in females, but not in males. Blockade of OT receptors with an OT antagonist on the first day of life resulted in neural activation of the central amygdala in response to a pairing with a novel male in adulthood. The central amygdala does not normally express c-Fos after a heterosexual pairing in reproductively na?ve prairie voles. Treatment effects also were observed in vasopressin immunoreactivity in the SON with OT-treated females showing a decrease.  相似文献   

4.
哺乳动物的单配制通常被认为是社会性单配制,它不是单纯地由性行为来决定,而是由诸多因素,包括长期的pair bond、夫妻双方共同抚育后代、免近亲交配以及雌雄两性相似等来决定的。在这篇综述中,我们论述了如何以啮齿类田鼠属(Microtus)为模型,通过比较研究来帮助我们理解社会性单配制的进化以及其神经调控机制。对田鼠属的研究不仅证实了单配制起源于艰苦的生存条件的假说,而且还证实了雌性性选择可能有利于维持单配制。不仅如此,哺乳动物单配制的进化还需要雄性的prosocial行为的不断强化。例如,亲近行为可以促进pairbond的形成并强化雄性对后代的哺育行为,而这种强化则来源于神经多肽催产素(OT)和加压素(AVP)与类固醇类激素的相互作用。催产素和加压素调控pairbond和双亲哺育行为的表达,而单配制和多配制田鼠的催产素和加压素受体在脑内的分布有显的不同。比较研究揭示了小型田鼠单配制的调控机制,而种内差异和行为上的可塑性则有助于我们进一步理解这种机制。比如,在某些条件下,多配制的草原田鼠(Microtus pennsylvanicu)的雄性个体具有哺育后代的行为。尽管草原田鼠的加压素Vla受体在脑内的分布与其他多配制的田鼠相似,但是如果脑室注射加压素,仍可以诱发其哺育后代的行为。同样是单配制的橙腹田鼠(Microtus ochrogaster),生活在:Illnois的显示出高水平的prosocial行为,而生活在Kansas的则表现出较低水平的社会性行为。即使两个种群的催产素或加压素Vla受体在脑内的分布相同,它们的雌激素受体表达水平显不同,这在雄性个体表现尤其明显。与Kansas的雄性个体相比,在终纹床核(bed rucleus of the stria tenninalis)和杏仁核中区(medial amygdala)这两个调控亲近行为和攻击行为的脑区,Illinois的雄性个体的α雌激素受体的水平要低得多。这些研究表明对雌激素的低敏感程度有利于高水平地表达prosocial行为并降低特定类型的攻击行为。  相似文献   

5.
In social species animals should fine-tune the expression of their social behavior to social environments in order to avoid the costs of engaging in costly social interactions. Therefore, social competence, defined as the ability of an animal to optimize the expression of its social behavior as a function of the available social information, should be considered as a performance trait that impacts on the Darwinian fitness of the animal. Social competence is based on behavioral plasticity which, in turn, can be achieved by different neural mechanisms of plasticity, namely by rewiring or by biochemically switching nodes of a putative neural network underlying social behavior. Since steroid hormones respond to social interactions and have receptors extensively expressed in the social behavioral neural network, it is proposed that steroids play a key role in the hormonal modulation of social plasticity. Here, we propose a reciprocal model for the action of androgens on short-term behavioral plasticity and review a set of studies conducted in our laboratory using an African cichlid fish (Oreochromis mossambicus) that provide support for it. Androgens are shown to be implicated as physiological mediators in a wide range of social phenomena that promote social competence, namely by adjusting the behavioral response to the nature of the intruder and the presence of third parties (dear enemy and audience effects), by anticipating territorial intrusions (bystander effect and conditioning of the territorial response), and by modifying future behavior according to prior experience of winning (winner effect). The rapid behavioral actions of socially induced short-term transient changes in androgens indicate that these effects are most likely mediated by nongenomic mechanisms. The fact that the modulation of rapid changes in behavior is open to the influence of circulating levels of androgens, and is not exclusively achieved by changes in central neuromodulators, suggests functional relevance of integrating body parameters in the behavioral response. Thus, the traditional view of seeing neural circuits as unique causal agents of behavior should be updated to a brain-body-environment perspective, in which these neural circuits are embodied and the behavioral performance (and outcomes as fitness) depends on a dynamic relationship between the different levels. In this view hormones play a major role as behavioral modulators.  相似文献   

6.
抑郁症是临床上常见的精神疾病.目前缺少治疗抑郁症的有效手段.催产素(oxytocin,OT)是一种由下丘脑室旁核和视上核神经元分泌的神经肽,参与生理和病理状态下多种复杂神经精神活动.近年来,许多临床和基础研究显示OT可通过多种机制减轻抑郁症状.本文就OT的生理作用,抑郁状态下OT分泌水平,OT对抑郁相关激素、脑区、环路和神经可塑性及OT对氧化应激反应的作用等最新研究进展做一综述,探究OT减轻抑郁症状的机制.  相似文献   

7.
Neuropeptides in the arginine vasotocin/arginine vasopressin (AVT/AVP) family play a major role in the regulation of social behavior by their actions in the brain. In mammals, AVP is found within a circuit of recriprocally connected limbic structures that form the social behavior neural network. This review examines the role played by AVP within this network in controlling social processes that are critical for the formation and maintenance of social relationships: social recognition, social communication and aggression. Studies in a number of mammalian species indicate that AVP and AVP V1a receptors are ideally suited to regulate the expression of social processes because of their plasticity in response to factors that influence social behavior. The pattern of AVP innervation and V1a receptors across the social behavior neural network may determine the potential range and intensity of social responses that individuals display in different social situations. Although fundamental information on how social behavior is wired in the brain is still lacking, it is clear that different social behaviors can be influenced by the actions of AVP in the same region of the network and that AVP can act within multiple regions of this network to regulate the expression of individual social behaviors. The existing data suggest that AVP can influence social behavior by modulating the interpretation of sensory information, by influencing decision making and by triggering complex motor outputs. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

8.
The present investigation examined the neural sites and mechanisms of opiate inhibition of female sexual behavior. Systemic administration of morphine (10 mg/kg) significantly reduced ovarian steroid-induced estrous behavior in female rats. This behavioral inhibition was prevented when the opiate receptor antagonist naloxone (5 mg/kg) was administered 30 min prior to morphine. Bilateral infusion of morphine directly into the ventromedial hypothalamus (VMH) also inhibited hormone-dependent estrous behavior for at least 2 hr. Furthermore, naloxone infusion into the VMH 20 min before behavior testing reduced the inhibitory effects of systemically administered morphine on lordosis. These results suggest that morphine may inhibit female sexual behavior by acting directly on the VMH, the primary site at which ovarian steroids facilitate this behavior. In a separate experiment we used in vivo brain microdialysis to test the hypothesis that morphine inhibits lordosis by interfering with norepinephrine (NE) neurotransmission in the VMH. In control rats, the onset of mating was associated with increased NE release in the VMH. Morphine-treated animals displayed neither behavioral estrus nor elevated NE release from the VMH when tested with stimulus males. These data are consistent with the hypothesis that morphine suppresses NE release in the VMH. Nevertheless, mechanisms other than or in addition to attenuation of hypothalamic NE release may contribute to the inhibitory effects of morphine on lordosis.  相似文献   

9.
Adolescence is a period during which many social behaviors emerge. One such behavior, flank marking, is a testosterone-modulated scent marking behavior that communicates dominance status between adult male Syrian hamsters. Testosterone modulates flank-marking behavior by altering neural transmission of vasopressin within a forebrain circuit. This study tested whether testicular hormones secreted during adolescence play purely a transient activational role in the display of flank-marking behavior, or whether adolescent steroid hormone secretions also cause long-term organizational changes in vasopressin binding within brain regions underlying flank-marking behavior. We tested this hypothesis by manipulating whether testicular secretions were present during adolescent development and then tested for flank-marking behavior and vasopressin receptor binding within the flank-marking neural circuit in young adulthood. Specifically, males were gonadectomized immediately before or after adolescence, replaced with testosterone 6 weeks following gonadectomy in young adulthood, and behavior tested 1 week later. Adult testosterone treatment activated flank-marking behavior only in males that were exposed to testicular hormones during adolescence. In addition, males exposed to testicular hormones during adolescence exhibited significantly less vasopressin receptor binding within the lateral septum than males deprived of adolescent hormones, suggesting that hormone-dependent remodeling of synapses normally occurs in the lateral septum during adolescence. These data highlight the importance of gonadal steroid hormone exposure during adolescence for the organization of neural circuits and social behavior.  相似文献   

10.
Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)—a region important for social and reward learning—is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)—a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues—during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei.  相似文献   

11.
Oxytocin (OT) effects on brain function and behavior are mediated by the oxytocin receptor (OXTR). The distribution of OXTR in the brain can profoundly influence social behavior. Emerging evidence suggests that DNA methylation of OXTR influences OXTR expression. Previously, we conducted a pharmaco‐functional Magnetic Resonance Imaging (fMRI) study in which healthy subjects were randomized to 24 IU intranasal OT or placebo and imaged with fMRI while playing a dyadic social interaction task known as the iterated Prisoner's Dilemma (PD) game with same‐sex partners. Here, we investigate whether DNA methylation of OXTR modulates the effect of intranasal OT on the neural response to positive and negative social interactions in the PD game. OXTR methylation did not modulate OT effects within brain regions where we previously reported OT effects in response to reciprocated (caudate nucleus) and unreciprocated cooperation (amygdala and anterior insula). However, OXTR methylation did modulate OT effects on the response to both reciprocated and unreciprocated cooperation in other brain regions such as the precuneus and visual cortex. Further restricting the analysis to OXTR rs53576 GG individuals revealed that OXTR methylation modulated OT effects on the precuneus response to reciprocated cooperation in men, the lateral septum response to reciprocated cooperation in women, and the visual cortex response to unreciprocated cooperation in men. These results suggest that OXTR methylation status may influence OT effects on mentalizing, attention and reward processing during social interactions. OXTR methylation may be important to consider if exogenous OT is used to treat social behavioral disorders in the future.  相似文献   

12.
Male rodents that are naturally paternal, like all females, must inhibit infanticide and activate direct parental behavior as they become parents. Males, however, alter their behavior in the absence of parturition, postpartum ovulation and lactation, and therefore do not experience the hormone dynamics associated with such conditions. Paternal males might nevertheless use the same hormones to activate pre-existing maternal behavior pathways in the brain. Positive and inverse associations between prolactin, sex steroids (estradiol, testosterone, progesterone), glucocorticoids, oxytocin and vasopressin and paternal behavior are reviewed. Across biparental rodents (Phodopus campbelli, Peromyscus californicus, Microtus ochrogaster, and Meriones unguiculatus), as well as non-human primates and men, hormone-behavior associations are broadly supported. However, experimental manipulations (largely restricted to P. campbelli) suggest that the co-variation of hormones and paternal behavior is not causal in paternal behavior. Perhaps the hormone-behavior associations shared by P. campbelli and other paternal males are important for other challenges at the same time as fatherhood (e.g., mating during the postpartum estrus). On the other hand, each paternal species might, instead, have unique neuroendocrine pathways to parental behavior. In the latter case, future comparisons might reveal extraordinary plasticity in how the brain forms social bonds and alters behavior in family groups.  相似文献   

13.
Oxytocin (OT) and arginine-vasopressin (AVP) are 2 peptides that are produced in the brain and released via the pituitary gland to the peripheral blood, where they have diverse physiological functions. In the last 2 decades it has become clear that these peptides also play a central role in the modulation of mammalian social behavior by their actions within the brain. Several lines of evidence suggest their involvement in autism spectrum disorder (ASD), which is known to be associated with impaired social cognition and behavior. Recent clinical trials using OT administration to autistic patients have reported promising results. Here, we aim to describe the main data that suggest a connection between these peptides and ASD. Following a short illustration of several major topics in ASD biology we will (a) briefly describe the oxytocinergic and vasopressinergic systems in the brain, (b) discuss a few compelling cases manifesting the involvement of OT and AVP in mammalian social behavior, (c) describe data supporting the role of these peptides in human social cognition and behavior, and (d) discuss the possibility of the involvement of OT and AVP in ASD etiology, as well as the prospect of using these peptides as a treatment for ASD patients.  相似文献   

14.
A conceptual model detailing the process of bio-behavioral synchrony between the online physiological and behavioral responses of attachment partners during social contact is presented as a theoretical and empirical framework for the study of affiliative bonds. Guided by an ethological behavior-based approach, we suggest that micro-level social behaviors in the gaze, vocal, affective, and touch modalities are dynamically integrated with online physiological processes and hormonal response to create dyad-specific affiliations. Studies across multiple attachments throughout life are presented and demonstrate that the extended oxytocin (OT) system provides the neurohormonal substrate for parental, romantic, and filial attachment in humans; that the three prototypes of affiliation are expressed in similar constellations of social behavior; and that OT is stable over time within individuals, is mutually-influencing among partners, and that mechanisms of cross-generation and inter-couple transmission relate to coordinated social behavior. Research showing links between peripheral and genetic markers of OT with concurrent parenting and memories of parental care; between administration of OT to parent and infant's physiological readiness for social engagement; and between neuropeptides and the online synchrony of maternal and paternal brain response in social-cognitive and empathy networks support the hypothesis that human attachment develops within the matrix of biological attunement and close behavioral synchrony. The findings have conceptual implications for the study of inter-subjectivity as well as translational implications for the treatment of social disorders originating in early childhood, such as autism spectrum disorders, or those associated with disruptions to early bonding, such as postpartum depression or child abuse and neglect. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

15.
Geometry and structural plasticity of synaptic connectivity   总被引:12,自引:0,他引:12  
Changes in synaptic connectivity patterns through the formation and elimination of dendritic spines may contribute to structural plasticity in the brain. We characterize this contribution quantitatively by estimating the number of different synaptic connectivity patterns attainable without major arbor remodeling. This number depends on the ratio of the synapses on a dendrite to the axons that pass within a spine length of that dendrite. We call this ratio the filling fraction and calculate it from geometrical analysis and anatomical data. The filling fraction is 0.26 in mouse neocortex, 0.22-0.34 in rat hippocampus. In the macaque visual cortex, the filling fraction increases by a factor of 1.6-1.8 from area V1 to areas V2, V4, and 7a. Since the filling fraction is much smaller than 1, spine remodeling can make a large contribution to structural plasticity.  相似文献   

16.
Trust underpins much of social and economic exchanges across human societies. In experimental economics, the Trust Game has served as the workhorse for the study of trust in a controlled incentivized setting. Recent evidence using intranasal drug administration, aka ‘sniffing’, suggests that oxytocin (OT) can function as a social hormone facilitating trust and other affiliative behaviors. Here we hypothesized that baseline plasma OT is a biomarker that partially predicts the degree of trust and trustworthiness observed in the trust game. Using a large sample of 1,158 participants, we observed a significant U-shaped relationship between plasma OT with the level of trust, and marginally with the level of trustworthiness, especially among males. Specifically, subjects with more extreme levels of plasma OT were more likely to be trusting as well as trustworthy than those with moderate levels of plasma OT. Our results contribute to a deeper understanding of the biological basis of human trust and underscore the usefulness of peripheral plasma OT measures in characterizing human social behavior. “You must trust and believe in people or life becomes impossible.” Anton Chekhov.  相似文献   

17.
Ovarian steroids and oxytocin (OT) have been implicated in the regulation of social behaviors. The purpose of the present study was to examine hormonal substrates of aggression and affiliation in the female Mongolian gerbil (Meriones unguiculatus), a highly social, monogamous rodent. Sexually naive adult females were paired with sexually experienced males for 48 h and their interactions videotaped. Females were gonadally intact and tested during vaginal estrus (INT) or ovariectomized and observed after the following treatments, administered by means of sc injections: EBEB (7 days of estradiol-benzoate); EBP (2 days of EB followed by progesterone), SALEB (saline, days 1-5 then 2 days of EB), OTEB (OT for days 1-5 then 2 days of EB); OTOIL (OT for days 1-5 then 2 days of OIL); or SALOIL (saline days 1-5 then 2 days of OIL). During the first hour of pairing INT females displayed higher levels of affiliation and lower levels of sniffing and agonistic behavior than SALOIL females. All hormonal treatments reduced agonistic behaviors when compared to SALOIL, although none of the hormonal treatments restored affiliation to INT levels. During the 48-h test overt aggression varied by treatment with INT, EBEB, EBP, and OTEB females displaying lower levels than SALOIL, while all groups displayed similar levels of affiliation. The results indicate that OT and E play a significant role in regulating male-directed aggressive behavior in females and that the presence of ovarian hormones as well as OT can increase affiliation during initial contact. Over a sustained period of cohabitation social cues appear to be more important in regulating affiliation than gonadal hormones.  相似文献   

18.
Gonadal hormones can produce striking behavioral and neural plasticity in adult organisms. For example, systemic administration of testosterone to adult female canaries induces the development of male-typical song behavior and results in a striking increase in the size of brain nuclei that are known to be involved with song control. The mechanism whereby androgens produce such neural plasticity is not known, although it has seemed likely that growth-promoting effects of androgens are due to a direct induction of protein synthesis in cells containing hormone receptors (following activation of specific genes by the hormone-receptor complex). In this experiment we have examined the trophic effect of testosterone in the song-control nucleus HVc (caudal nucleus of the ventral hyperstriatum), which has been shown to contain androgen-concentrating cells as well as neurons that are especially responsive to conspecific song. We report here that testosterone administration increases the volume of HVc in hearing adult female canaries only; testosterone-induced growth of HVc is greatly attenuated in birds that are deprived of auditory stimulation via deafening. Thus, testosterone treatment alone is not a sufficient stimulus for neural growth in HVc. This result suggests that testosterone does not stimulate growth solely via a direct action on hormone receptors in HVc, but rather that testosterone and sensory stimulation can act synergistically to produce structural plasticity in the adult brain.  相似文献   

19.
While aggression is often conceptualized as a highly stereotyped, innate behavior, individuals within a species exhibit a surprising amount of variability in the frequency, intensity, and targets of their aggression. While differences in genetics are a source of some of this variation across individuals (estimates place the heritability of behavior at around 25–30%), a critical driver of variability is previous life experience. A wide variety of social experiences, including sexual, parental, and housing experiences can facilitate “persistent” aggressive states, suggesting that these experiences engage a common set of synaptic and molecular mechanisms that act on dedicated neural circuits for aggression. It has long been known that sex steroid hormones are powerful modulators of behavior, and also, that levels of these hormones are themselves modulated by experience. Several recent studies have started to unravel how experience-dependent hormonal changes during adulthood can create a cascade of molecular, synaptic, and circuit changes that enable behavioral persistence through circuit level remodeling. Here, we propose that sex steroid hormones facilitate persistent aggressive states by changing the relationship between neural activity and an aggression “threshold”.  相似文献   

20.
The neural mechanisms by which steroid hormones regulate aggression are unclear. Although testosterone and its metabolites are involved in both the regulation of aggression and the maintenance of neural morphology, it is unknown whether these changes are functionally related. We addressed the hypothesis that parallel changes in steroid levels and brain volumes are involved in the regulation of adult aggression. We examined the relationships between seasonal hormone changes, aggressive behavior, and the volumes of limbic brain regions in free-living male and female tree lizards (Urosaurus ornatus). The brain nuclei that we examined included the lateral septum (LS), preoptic area (POA), amygdala (AMY), and ventromedial hypothalamus (VMH). We showed that the volumes of the POA and AMY in males and the POA in females vary with season. However, reproductive state (and thus hormonal state) was incompletely predictive of these seasonal changes in males and completely unrelated to changes in females. We also detected male-biased dimorphisms in volume of the POA, AMY, and a dorsolateral subnucleus of the VMH but did not detect a dimorphism between alternate male morphological phenotypes. Finally, we showed that circulating testosterone levels were higher in males exhibiting higher frequency and intensity of aggressive display to a conspecific, though brain nucleus volumes were unrelated to behavior. Our findings fail to support our hypothesis and suggest instead that plasma testosterone level covaries with aggression level and in a limited capacity with brain nucleus volumes but that these are largely unrelated relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号