首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to define the phylogenetical relationship among 17 phenotypically related species of genera Enterobacter, Pantoea, Serratia, Klebsiella and Erwinia, we determined almost all of their groE operon sequences using the polymerase chain reaction direct sequencing method. The number of nucleotide substitutions per site was 0.12+/-0.030. The value was 3.6-fold higher than that of 16S rDNA. As a result, we were successful in constructing molecular phylogenetic trees which had a finer resolution than that based on the 16S rDNA sequences. The phylogenetic trees based on the nucleotide sequences and deduced amino acid sequences of groE operons indicated that the members of genera Enterobacter, Pantoea and Klebsiella were closely related to each other, while Serratia and Erwinia species except Erwinia carotovora, made distinct clades. The close relationship between Enterobacter aerogenes and Klebsiella pneumoniae, that had been suggested by biochemical tests and DNA hybridization, was also supported by our molecular phylogenetic trees.  相似文献   

2.
The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNA(Glu) gene and two with tRNA(Ile) and tRNA(Ala) genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNA(Glu)-containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNA(Glu) operons and two tRNA(Ile) and tRNA(Ala) operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.  相似文献   

3.
4.
A mutant that cannot utilize pectin substances of plant cell walls was obtained via insertion of mini-mini-Tn5xylE transposon into the chromosome of phytopathogenic bacteria Erwinia carotovora subsp. atroseptica. The inability of mutant cells to utilize these substrates was caused by a failure to accomplish the catabolism of unsaturated digalacturonic acid (UDA). Study of enzymatic activities has established that mutant bacteria lost the ability to produce 2,5-diketo-3-deoxygluconate dehydrogenase, an enzyme of intracellular UDA utilization. Molecular cloning of the mutant gene was conducted, and its nucleotide sequence was determined. It was shown that the nucleotide sequence of this gene had an 82% homology with the sequence of Erwinia chrysanthemi EC3937 kduD gene encoding 2,5-diketo-3-deoxygluconate dehydrogenase. The intergene kdul-kduD region in bacteria Erwinia carotovora subsp. atroseptica is shorter in length by 98 nucleotides than the corresponding region of Erwinia chrysanthemi and does not contain promoter sequences. The kduD gene was located at 126.8 min of the Erwinia carotovora subsp. atroseptica genetic map.  相似文献   

5.
Summary ResA is a positive regulator of genes for extracellular polysaccharide biosynthesis in the Enterobacteriaceae. The nucleotide sequence of the rcsA gene from Erwinia stewartii was determined and compared to rcsA sequences from E. amylovora, Escherichia coli, and Klebsiella pneumoniae. Three highly conserved regions of the gene were identified. The C-terminal end of the open reading frame (ORF) shared significant amino acid homology to the LuxR class of bacterial activator proteins. Insertion and deletion mutagenesis of the 5 non-coding region indicated that maximal expression of rcsA was dependent upon cis-acting regulatory sequences located more than 300 by upstream of the translational start site.  相似文献   

6.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

7.
Many pathogenic and epiphytic bacteria isolated from apples and pears belong to the genus Erwinia; these include the species E. amylovora, E. pyrifoliae, E. billingiae, E. persicina, E. rhapontici and E. tasmaniensis. Identification and classification of freshly isolated bacterial species often requires tedious taxonomic procedures. To facilitate routine identification of Erwinia species, we have developed a PCR method based on species-specific oligonucleotides (SSOs) from the sequences of the housekeeping genes recA and gpd. Using species-specific primers that we report here, differentiation was done with conventional PCR (cPCR) and quantitative PCR (qPCR) applying two consecutive primer annealing temperatures. The specificity of the primers depends on terminal Single Nucleotide Polymorphisms (SNPs) that are characteristic for the target species. These PCR assays enabled us to distinguish eight Erwinia species, as well as to identify new Erwinia isolates from plant surfaces. When performed with mixed bacterial cultures, they only detected a single target species. This method is a novel approach to classify strains within the genus Erwinia by PCR and it can be used to confirm other diagnostic data, especially when specific PCR detection methods are not already available. The method may be applied to classify species within other bacterial genera.  相似文献   

8.
In order to determine a possible genomic divergence of Erwinia amylovora'fruit tree' and raspberry strains from North America, several isolates were differentiated by pulsed-field gel electrophoresis (PFGE) analysis, the size of short DNA sequence repeats (SSRs) and the nucleotide and deduced amino acid sequences of their hrpN genes. By PFGE analysis European strains are highly related, whereas strains from North America were diverse and were further distinguished by the SSR numbers from plasmid pEA29. The E. amylovora strains from Europe showed identical HrpN sequences in contrast to the American isolates from fruit trees and raspberry. Those were related to each other, but distinguishable by their HrpN patterns. The Asian pear pathogens differed in HrpN among each other and from E. amylovora. Erwinia pyrifoliae isolates and the Erwinia strains from Japan were ordered via their HrpN sequences in agreement with the PFGE patterns. For all three pathogens, dendrograms from PFGE and sequence data indicate an evolutionary diversity within the species in spite of a genetic conservation for parts of the hrpN genes suggesting a long persistence of the Asian pear pathogens in Korea and Japan as well as of fire blight in North America. Some of the divergent American E. amylovora isolates share PFGE patterns with the relatively uniform European strains.  相似文献   

9.
Levan production by strains of Erwinia herbicola is common, and this property has some taxonomic significance for species differentiation within the "herbicola" group. The extracellular polysaccharide elaborated by strain 403 was characterized by nuclear magnetic resonance spectroscopy and methylation analysis. Results showed it to be a typical bacterial levan.  相似文献   

10.
Type 1 fimbriae from Erwinia carotovora subsp. carotovora and mannose-resistant fimbriae from Erwinia rhapontici were purified and characterized. The type 1 fimbrillin had an apparent molecular weight of 16,500; that of the mannose-resistant fimbrillin was 18,000. The amino-terminal amino acid sequences of the two fimbrillins were related, but tryptic peptide maps showed significant differences between the proteins. No serological cross-reaction was found between the two fimbrial filaments, nor did they cross-react with type 1 or type 3 fimbriae purified from other enterobacterial species. Immunofluorescent staining of bacterial populations revealed that they were heterogeneous with respect to fimbriation.  相似文献   

11.
Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.  相似文献   

12.
A mutant that cannot utilize pectin substances of plant cell walls was obtained via insertion of mini-Tn5xylE transposon into the chromosome of phytopathogenic bacteria Erwinia carotovora subsp. atroseptica. the inability of mutant cells to utilize these substrates was caused by a failure to accomplish the catabolism of unsaturated digalacturonic acid (UDA). Study of enzymatic activities has established that mutant bacteria lost the ability to produce 2,5-diketo-3-deoxygluconate dehydrogenase, an enzyme of intracellular UDA utilization. Molecular cloning of the mutant gene was conducted, and its nucleotide sequence was determined. It was shown that the nucleotide sequence of this gene had an 82% homology with the sequence of Erwinia chrysanthemi EC3937 kduD gene encoding 2,5-diketo-3-deoxygluconate dehydrogenase. The intergene kduI–kduD region in bacteria Erwinia carotovora subsp. atroseptica is shorter in length by 98 nucleotides than the corresponding region of Erwinia chrysanthemi and does not contain promoter sequences. The kduD gene was located at 126.8 min of the Erwinia carotovora subsp. atroseptica genetic map.  相似文献   

13.
Pectate lyase (Pel) plays a crucial role in the maceration of vegetables by soft rot Erwinia spp. We have characterized the four Pel isoenzymes of Erwinia carotovora subspecies carotovora strain SCRI193. In this paper we concentrate on two isoenzymes which have different locations in SCRI193: PLb is periplasmic and PLc is extracellular. Comparison of the gene products and nucleotide sequences of pelB and pelC allowed us to assign them to different gene families. In addition, we have identified a number of conserved amino acid residues that are common to all extracellular Pel isoenzymes.  相似文献   

14.
A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T).  相似文献   

15.
The nucleotide sequences, genetic organization, and distribution of plasmids pEU30 (30,314 bp) and pEL60 (60,145 bp) from the plant pathogen Erwinia amylovora are described. The newly characterized pEU30 and pEL60 plasmids inhabited strains isolated in the western United States and Lebanon, respectively. The gene content of pEU30 resembled plasmids found in plant-associated bacteria, while that of pEL60 was most similar to IncL/M plasmids inhabiting enteric bacteria.  相似文献   

16.
The nucleotide sequences, genetic organization, and distribution of plasmids pEU30 (30,314 bp) and pEL60 (60,145 bp) from the plant pathogen Erwinia amylovora are described. The newly characterized pEU30 and pEL60 plasmids inhabited strains isolated in the western United States and Lebanon, respectively. The gene content of pEU30 resembled plasmids found in plant-associated bacteria, while that of pEL60 was most similar to IncL/M plasmids inhabiting enteric bacteria.  相似文献   

17.
PCR-based subtractive hybridization was used to isolate sequences from Erwinia amylovora strain Ea110, which is pathogenic on apples and pears, that were not present in three closely related strains with differing host specificities: E. amylovora MR1, which is pathogenic only on Rubus spp.; Erwinia pyrifoliae Ep1/96, the causal agent of shoot blight of Asian pears; and Erwinia sp. strain Ejp556, the causal agent of bacterial shoot blight of pear in Japan. In total, six subtractive libraries were constructed and analyzed. Recovered sequences included type III secretion components, hypothetical membrane proteins, and ATP-binding proteins. In addition, we identified an Ea110-specific sequence with homology to a type III secretion apparatus component of the insect endosymbiont Sodalis glossinidius, as well as an Ep1/96-specific sequence with homology to the Yersinia pestis effector protein tyrosine phosphatase YopH.  相似文献   

18.
Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.  相似文献   

19.
Nucleotide sequence of pnl gene from Erwinia carotovora Er   总被引:2,自引:0,他引:2  
The nucleotide sequence of pnl gene encoding pectin lyase (PNL; EC4.2.2.10)from Erwinia carotovora Er was determined. The structural gene of pnl consisted of 942 base pairs. An open reading frame that could encode a 33,700 dalton polypeptide consisting 314 amino acids was assigned. The molecular size of the polypeptide predicted from the amino acid composition was close to the value of PNL determined in E.carotovora Er. The nucleotide sequence of the 5'-flanking region showed the presence of the consensus sequence of ribosome binding site, Pribnow box and the RNA polymerase recognition site in E.carotovora and Escherichia coli. Between the presumed Pribnow box and the ribosome binding site, two pairs of inverted repeats were found. By comparing the predicted amino acid sequences of pnl, several reported bacterial pectate lyases and Aspergillus niger pectin lyase, short regions of homology were found despite the different substrate specificities of these enzymes.  相似文献   

20.
The episomic element F'lac(+) was transferred, probably by conjugation, from Escherichia coli to Lac(-) strains of Erwinia herbicola, Erwinia amylovora, and Erwinia chrysanthemi (but not to several other Erwinia spp. In preliminary trials). The lac genes in the exconjugants of the Erwinia spp. showed varying degrees of stability depending on the strain (stable in E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but markedly unstable in E. chrysanthemi strain EC16). The lac genes and the sex factor (F) were eliminated from the exconjugants by treatment with acridine orange, thus suggesting that both lac and F are not integrated in the Erwinia exconjugants. All of the tested Lac(+) exconjugants of E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but not of E. chrysanthemi strain EC 16, were sensitive to the F-specific phage M13. The heterogenotes (which harbored F'lac(+)) of E. herbicola strains Y46 and Y74, E. amylovora strain EA178, and E. chrysanthemi strain EC16 were able to transfer lac genes by conjugation to strains of E. herbicola, E. amylovora, E. chrysanthemi, Escherichia coli, and Shigella dysenteriae. The frequency of such transfer from Lac(+) exconjugants of Erwinia spp. was comparable to that achieved by using E. coli F'lac(+) as donors, thus indicating the stability, expression, and restriction-and-modification properties of the sex factor (F) in Erwinia spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号