首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The anti-inflammatory cytokine IL-10 inhibits intimal hyperplasia after stent implantation via a powerful inactivation of monocytes. We tested the hypothesis that IL-10 may also inhibit vascular smooth muscle cell (SMC) activation via the inhibition of the NF-kappaB/I-kappaB system. The IL-10 receptor was detected in rat SMCs in vitro and in vivo. In LPS-stimulated rat SMCs, 1 ng/ml recombinant murine IL-10 (mIL-10) reduced I-kappaBalpha and I-kappaBbeta degradation, NF-kappaB activation, as well as the expression of the NF-kappaB-dependent gene IL-6 by 32%, 31%, 75%, and 19%, respectively (P < 0.05 for all). Similar results were obtained in vivo 6 h and 4 days after balloon abrasion of the rat aorta, a model in which intimal hyperplasia results essentially from SMC activation. Moreover, mIL-10 reduced SMC proliferation and migration in vitro (by 60% for both, P < 0.0001), resulting in reduced SMC proliferation and intimal growth 14 days after balloon abrasion of the rat aorta (by 76% and 75%, respectively; P < 0.005). In conclusion, mIL-10 has a direct inhibitory effect on SMCs in vitro and in vivo. This effect is mediated in part by NF-kappaB inactivation and may participate in the overall protective effect of IL-10 on postangioplasty restenosis.  相似文献   

2.
白介素-10抑制TNF-α诱导的血管平滑肌细胞增殖   总被引:7,自引:0,他引:7  
OuYang P  Peng LS  Yang H  Wu WY  Xu AL 《生理学报》2002,54(1):79-82
研究观察了重组人白介素 10 (rhIL 10 )对肿瘤坏死因子 (TNF α)刺激的离体大鼠胸主动脉血管平滑肌细胞增殖、细胞周期及对p4 4 /p4 2丝裂素活化蛋白激酶的影响。实验培养大鼠主动脉血管平滑肌细胞 ,采用MTS/PES法确定血管平滑肌细胞 (vascularsmoothmusclecells,VSMCs)的增殖状态 ;应用流式细胞术测定细胞周期 ;利用p4 4 / 4 2磷酸化抗MAPK抗体的蛋白免疫印迹法测定MAPK蛋白表达。结果显示 :( 1)TNF α处理组与对照组相比 ,TNF α对VSMC增殖具有明显的刺激作用 (P <0 0 5 )。rhIL 10单独应用对VSMCs生长没有影响 (P >0 0 5 )。在TNF α刺激下 ,低至 10ng/ml的rhIL 10可抑制VSMCs的生长 (P <0 0 5 )。流式细胞术测定的结果显示 ,rhIL 10分别可使TNF α作用下的VSMC大部分处于G0 /G1期 ,与对照组相比有明显差异 (P <0 0 1)。 ( 2 )TNF α对p4 4 /p4 2MAPK蛋白表达有显著的增强作用 ,此作用可被rhIL 10抑制。结果提示 ,rhIL 10可抑制TNF α诱导的VSMC增殖及p4 4 /p4 2丝裂素活化蛋白激酶的表达  相似文献   

3.
4.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

5.
Abstract.  We have previously shown that the onset of smooth muscle cell proliferation in tissue cultures is triggered independently of serum. The aim of the present study was to investigate if this process was affected by osmotic stress. Vascular explants from 8-month-old male rats were cultured under serum-free conditions using collagen I as migration substrate. Sucrose was added to the culture medium in concentrations varying from 1 to 3% (30–90 mOsM). Cell migration from aortic explants onto the culture dishes was totally inhibited at a sucrose concentration of 90 mOsM. A significant dose-dependent decline in proliferation was shown for cells in explants pulse labelled with 3H-thymidine. In contrast, pulse labelling with 35S-methionine revealed that protein synthesis was maintained in the presence of sucrose. The results indicate that osmotic pressure affects smooth muscle cell protein synthesis, proliferation and migration.  相似文献   

6.
7.
8.
Ouabain-induced signaling and vascular smooth muscle cell proliferation   总被引:11,自引:0,他引:11  
The hypothesis of this study is that the sodium pump complex acts as an intracellular signal-transducing molecule in canine vascular smooth muscle cells through its interaction with other membrane and cytoskeletal proteins. We have demonstrated that 1 nm ouabain induced transactivation of the epidermal growth factor receptor (EGFR), resulting in increased proliferation and bromodeoxyuridine (BrdUrd) uptake. Immunoprecipitation and Western blotting showed that the EGFR and Src were phosphorylated within 5 min of 10(-9) m ouabain stimulation. Both ouabain-induced DNA synthesis (BrdUrd uptake) and MAPK42/44 phosphorylation were inhibited by the Src inhibitor PP2, the EGFR kinase inhibitor AG1478, the tyrosine kinase inhibitor genistein, and the MEK1 inhibitor PD98059. Ouabain concentrations higher than 1 nm had little or no stimulating effect on proliferation or BrdUrd uptake but did minimally activate ERK1/2. Thus, low concentrations of ouabain, which do not inhibit the sodium pump sufficiently to perturb the resting cellular ionic milieu, initiate a transactivational signaling cascade leading to vascular smooth muscle cell proliferation.  相似文献   

9.
The binding, internalization, and metabolism of [3H]-heparin by human umbilical vein endothelial cells (HUVEC) and human umbilical arterial smooth muscle cells (HUASMC) have been characterized using size-exclusion HPLC. Incubation of HUVEC with [3H]-heparin demonstrated selective binding of high-molecular-weight (MW) components (MW = 21 kd), which was followed by rapid, temperature-dependent internalization. Over the next 3 hours, this internalized [3H]-heparin was degraded to low-MW fragments (MW = 0.9 kd). Primary cultures of HUASMC selectively bound extremely high-MW components (MW = 40 kd) and also smaller components whose MW (0.9 kd) corresponded to that of the heparin metabolite(s) formed by HUVEC. Subcultured HUASMC bound only the 40-kd components. Internalization of heparin by smooth muscle cells (SMC) was significantly slower than that determined for HUVEC, and even after 4 hours there was no evidence of the heparin being metabolized. However, when incubating primary rabbit aortic SMC with purified low-MW heparin fragment(s) produced in culture by HUVEC, a significantly lower proliferative response of these cells (IC50 = 18.4 micrograms/ml) was obtained. Virtually no effect was observed with subcultured SMC in the range of the tested concentrations (0-20 micrograms/ml). These fragments were 10- to 15-fold more effective in inhibiting primary SMC growth than was standard heparin. Furthermore, heparin fractions in the same range of molecular weights, purified either after nitrous acid or heparinase depolymerization of standard heparin, showed no activity on primary SMC growth, thus indicating a high degree of selectivity of the heparin metabolite(s) produced by HUVEC in culture.  相似文献   

10.
Transforming growth factor-beta (TGF-beta) has been reported to be involved in the pathogenesis of cardiovascular proliferative diseases such as hypertensive vascular disease, atherosclerosis, and arterial restenosis after angioplasty. We designed a 38-base DNA-RNA chimeric hammerhead ribozyme to cleave human TGF-beta1 mRNA as a gene therapy for human arterial proliferative diseases. In the presence of MgCl(2), synthetic ribozyme to human TGF-beta1 mRNA cleaved the synthetic target RNA into two RNA fragments of predicted size. A control mismatch ribozyme, with one different base in the catalytic loop region, was inactive. DNA-RNA chimeric ribozyme (0. 01-1.0 microM) significantly inhibited angiotensin II (Ang II)-stimulated DNA synthesis in a dose-dependent manner in human vascular smooth muscle cells (VSMC). The mismatch ribozyme did not affect Ang II-stimulated DNA synthesis in the cells. DNA-RNA chimeric ribozyme (1.0 microM) inhibited the proliferation of human VSMC in the presence of Ang II. DNA-RNA chimeric ribozyme (1.0 microM) significantly inhibited Ang II-stimulated TGF-beta1 mRNA and protein expression in human VSMC. These results indicate that the designed DNA-RNA chimeric hammerhead ribozyme targeted to human TGF-beta1 mRNA can effectively and potentially inhibit growth of human VSMC by cleaving the TGF-beta1 mRNA. This finding suggests that this ribozyme will be useful in the gene therapy of arterial proliferative diseases.  相似文献   

11.
Control of smooth muscle cell proliferation in vascular disease   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Smooth muscle cell proliferation has previously been regarded as a central feature in vascular disease. The role of this process has recently been substantially re-evaluated, and we have reconsidered the functional importance of smooth muscle cell proliferation, the origin of proliferating smooth muscle cells in lesions, and the mechanisms whereby smooth muscle cell proliferation is controlled. In this review, we summarize recent progress in the understanding of smooth muscle cell proliferation, with a particular focus on how interactions between the extracellular matrix, smooth muscle cells, and mitogens control critical steps in this process. RECENT FINDINGS: Irrespective of the origin of smooth muscle cells in vascular lesions, fundamental interactions between the extracellular matrix and cell surface integrins are necessary in order to initiate a proliferative response in a quiescent smooth muscle cell, in a similar manner to any non-malignant cell. These interactions trigger intracellular signaling and cell cycle entry, which facilitate cell cycle progression and proliferation by mitogens. In addition, extracellular matrix interactions may also control the availability and activity of growth factors such as heparin-binding mitogens, which can be sequestered by heparan sulfate containing extracellular matrix components and regulate smooth muscle cell proliferation. SUMMARY: New insights into mechanisms whereby the extracellular matrix takes part in the control of smooth muscle cell proliferation suggest a number of putative targets for future therapies that can be applied to increase plaque stability, prevent the clinical consequences of atherosclerosis and improve outcomes after interventional procedures and organ transplantation.  相似文献   

12.
Sivelestat sodium hydrate (sivelestat) is a novel synthetic drug and specific inhibitor of neutrophil elastase that has been approved in Japan as a treatment for acute lung injury associated with systemic inflammatory response syndrome. It is important to determine how sivelestat affects hemodynamics and the regulatory mechanisms of vascular smooth muscle (VSM). We recently found that sivelestat relaxes porcine coronary artery VSM via selective inhibition of Ca2+ sensitization induced by a receptor agonist without affecting the normal Ca2+-induced contraction. Although sivelestat relaxes porcine artery, its effects on human artery are unknown; therefore, the purpose of the present study was to assess the effects of sivelestat on human artery. In the present study, sivelestat induced concentration-dependent (1 × 10−6 to 3 × 10−4 M) vasorelaxation in U46619 (1 nM) and sphingosylphosphorylcholine (SPC) (30 mM)-precontracted human gastric artery with or without endothelium, but sivelestat did not induce vasorelaxation in conditions of high K+ (40 mM) depolarization. Sivelestat inhibited VSM contraction by an agonist and SPC, and it did not affect Ca2+-induced normal physiologic contraction.  相似文献   

13.
14.
Hyperproliferation of vascular smooth muscle cells is a hallmark of atherosclerosis and related vascular complications. Microtubules are important for many aspects of mammalian cell responses including growth, migration and signaling. alpha-Tubulin, a component of the microtubule cytoskeleton, is unique amongst cellular proteins in that it undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyr-tubulin). Whereas the reversible detyrosination/tyrosination cycle of alpha-tubulin has been implicated in regulating various aspects of cell biology, the precise function of this posttranslational modification has remained poorly characterized. Herein, we provide evidence suggesting that alpha-tubulin detyrosination is a required event in the proliferation of vascular smooth muscle cells. Proliferation of rat aortic smooth muscle cells in response to serum was temporally associated with the detyrosination of alpha-tubulin, but not acetylation of alpha-tubulin; Glu-tubulin reached maximal levels between 12 and 18h following cell cycle initiation. Inclusion of 3-nitro-l-tyrosine (NO(2)Tyr) in the culture medium resulted in the selective nitrotyrosination of alpha-tubulin, that was paralleled by decreased elaboration of Glu-tubulin, decreased expression of cyclins A and E, decreased association of the microtubule plus-end binding protein EB1, and inhibited cell proliferation. Nitrotyrosination of alpha-tubulin did not induce necrotic or apoptotic death of rat aortic smooth muscle cells, but instead led to cell cycle arrest at the G(1)/S boundary coincident with decreased DNA synthesis. Collectively, these results suggest that the C-terminus of alpha-tubulin and its detyrosination are functionally important as a molecular switch that regulates cell cycle progression in vascular smooth muscle cells.  相似文献   

15.
Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-α-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.  相似文献   

16.
17.
18.
Plant-derived polyphenolic compounds have beneficial health effects. In the present study, we determined the ability of ellagic acid (EA) to prevent platelet-derived growth factor-BB (PDGF-BB)-induced proliferation of primary cultures of rat aortic smooth muscle cells (RASMCs). We also determined the ability of EA to prevent atherosclerosis in streptozotocin-induced diabetic rats. Proliferation of cells was measured via Alamar Blue assay and through propidium iodide-based cell cycle analysis in flow cytometer. Reactive oxygen species (ROS) were measured via 2′,7′-dichlorofluorescin diacetate and Amplex red methods. Expression of proliferation markers and activation of kinases were assessed by immunoblot analysis. Cotreatment of primary cultures of RASMCs with 25 μmol/L of EA significantly reduced PDGF-BB (20 ng/ml)-induced proliferation by blocking S-phase entry. EA effectively blocked PDGF receptor-β (PDGFR-β) tyrosine phosphorylation, generation of intracellular ROS and downstream activation of extracellular signal-regulated kinase 1/2. It also blocked PDGF-BB-induced expression of cyclin D1. Computational molecular docking of EA with the PDGFR-β–PDGF-BB complex revealed two putative inhibitor binding sites which showed similar binding energies with the known PDGFR-β inhibitor AG1295. In diabetic rats, supplementation of diet with 2% EA significantly blocked diabetes-induced medial thickness, and lipid and collagen deposition in the arch of aorta. These were assessed through haematoxylin and eosin, Oil Red O and Masson’s trichome staining, respectively. EA treatment also blocked cyclin D1 expression in medial smooth muscle cells in experimental animals. Thus, EA is effective in reducing atherosclerotic process by blocking proliferation of vascular smooth muscle cells.  相似文献   

19.
The migration and proliferation of vascular smooth muscle cells (VSMCs) are essential elements during the development of atherosclerosis and restenosis. An increasing number of studies have reported that extracellular matrix (ECM) proteins, including the CCN protein family, play a significant role in VSMC migration and proliferation. CCN4 is a member of the CCN protein family, which controls cell development and survival in multiple systems of the body. Here, we sought to determine whether CCN4 is involved in VSMC migration and proliferation. We examined the effect of CCN4 using rat cultured VSMCs. In cultured VSMCs, CCN4 stimulated the adhesion and migration of VSMCs in a dose-dependent manner, and this effect was blocked by an antibody for integrin α5β1. CCN4 expression was enhanced by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Furthermore, knockdown of CCN4 by siRNA significantly inhibited the VSMC proliferation. CCN4 also could up-regulate the expression level of marker proteins of the VSMCs phenotype. Taken together, these results suggest that CCN4 is involved in the migration and proliferation of VSMCs. Inhibition of CCN4 may provide a promising strategy for the prevention of restenosis after vascular interventions.  相似文献   

20.
Vascular interstitial cells (VICs) are non‐contractile cells with filopodia previously described in healthy blood vessels of rodents and their function remains unknown. The objective of this study was to identify VICs in human arteries and to ascertain their role. VICs were identified in the wall of human gastro‐omental arteries using transmission electron microscopy. Isolated VICs showed ability to form new and elongate existing filopodia and actively change body shape. Most importantly sprouting VICs were also observed in cell dispersal. RT‐PCR performed on separately collected contractile vascular smooth muscle cells (VSMCs) and VICs showed that both cell types expressed the gene for smooth muscle myosin heavy chain (SM‐MHC). Immunofluorescent labelling showed that both VSMCs and VICs had similar fluorescence for SM‐MHC and αSM‐actin, VICs, however, had significantly lower fluorescence for smoothelin, myosin light chain kinase, h‐calponin and SM22α. It was also found that VICs do not have cytoskeleton as rigid as in contractile VSMCs. VICs express number of VSMC‐specific proteins and display features of phenotypically modulated VSMCs with increased migratory abilities. VICs, therefore represent resident phenotypically modulated VSMCs that are present in human arteries under normal physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号